Working…
This commit is contained in:
		| @@ -11,28 +11,30 @@ import Nevanlinna.meromorphicOn_divisor | ||||
| open Real | ||||
|  | ||||
|  | ||||
|  | ||||
| theorem jensen_case_R_eq_one' | ||||
| theorem jensen | ||||
|   {R : ℝ} | ||||
|   (hR : 0 < R) | ||||
|   (f : ℂ → ℂ) | ||||
|   (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 1)) | ||||
|   (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) | ||||
|   (h₂f : f 0 ≠ 0) : | ||||
|   log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by | ||||
|   log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by | ||||
|  | ||||
|   have h₁U : IsConnected (Metric.closedBall (0 : ℂ) 1) := by | ||||
|   have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by | ||||
|     constructor | ||||
|     · apply Metric.nonempty_closedBall.mpr (by simp) | ||||
|     · exact (convex_closedBall (0 : ℂ) 1).isPreconnected | ||||
|     · apply Metric.nonempty_closedBall.mpr | ||||
|       exact le_of_lt hR | ||||
|     · exact (convex_closedBall (0 : ℂ) R).isPreconnected | ||||
|  | ||||
|   have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := | ||||
|     isCompact_closedBall 0 1 | ||||
|   have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := | ||||
|     isCompact_closedBall 0 R | ||||
|  | ||||
|   have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by | ||||
|     use ⟨0, Metric.mem_closedBall_self (by simp)⟩ | ||||
|   have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by | ||||
|     use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩ | ||||
|  | ||||
|   have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by | ||||
|     exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor | ||||
|  | ||||
|   have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by | ||||
|   have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by | ||||
|     intro x | ||||
|     contrapose | ||||
|     simp | ||||
| @@ -63,7 +65,7 @@ theorem jensen_case_R_eq_one' | ||||
|     rw [hs] | ||||
|     simp | ||||
|  | ||||
|   have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by | ||||
|   have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) R, f z ≠ 0 → log ‖f z‖ = G z := by | ||||
|     intro z h₁z h₂z | ||||
|  | ||||
|     rw [h₄F] | ||||
| @@ -104,40 +106,41 @@ theorem jensen_case_R_eq_one' | ||||
|     simpa | ||||
|  | ||||
|  | ||||
|   have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by | ||||
|   have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 R x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x) := by | ||||
|  | ||||
|     rw [intervalIntegral.integral_congr_ae] | ||||
|     rw [MeasureTheory.ae_iff] | ||||
|     apply Set.Countable.measure_zero | ||||
|     simp | ||||
|  | ||||
|     have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)} | ||||
|       ⊆ (circleMap 0 1)⁻¹' (h₃f.toFinset) := by | ||||
|     have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 R a)‖ = G (circleMap 0 R a)} | ||||
|       ⊆ (circleMap 0 R)⁻¹' (h₃f.toFinset) := by | ||||
|       intro a ha | ||||
|       simp at ha | ||||
|       simp | ||||
|       by_contra C | ||||
|       have t₀ : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := | ||||
|         circleMap_mem_closedBall 0 (zero_le_one' ℝ) a | ||||
|       have t₁ : f (circleMap 0 1 a) ≠ 0 := by | ||||
|         let A := h₁f (circleMap 0 1 a) t₀ | ||||
|       have t₀ : (circleMap 0 R a) ∈ Metric.closedBall 0 R := by | ||||
|         apply circleMap_mem_closedBall | ||||
|         exact le_of_lt hR | ||||
|       have t₁ : f (circleMap 0 R a) ≠ 0 := by | ||||
|         let A := h₁f (circleMap 0 R a) t₀ | ||||
|         rw [← A.order_eq_zero_iff] | ||||
|         unfold MeromorphicOn.divisor at C | ||||
|         simp [t₀] at C | ||||
|         rcases C with C₁|C₂ | ||||
|         · assumption | ||||
|         · let B := h₁f.meromorphicOn.order_ne_top' h₁U | ||||
|           let C := fun q ↦ B q ⟨(circleMap 0 1 a), t₀⟩ | ||||
|           let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩ | ||||
|           rw [C₂] at C | ||||
|           have : ∃ u : (Metric.closedBall (0 : ℂ) 1), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by | ||||
|             use ⟨(0 : ℂ), (by simp)⟩ | ||||
|             let H := h₁f 0 (by simp) | ||||
|           have : ∃ u : (Metric.closedBall (0 : ℂ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by | ||||
|             use ⟨(0 : ℂ), (by simp; exact le_of_lt hR)⟩ | ||||
|             let H := h₁f 0 (by simp; exact le_of_lt hR) | ||||
|             let K := H.order_eq_zero_iff.2 h₂f | ||||
|             rw [K] | ||||
|             simp | ||||
|           let D := C this | ||||
|           tauto | ||||
|       exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁) | ||||
|       exact ha.2 (decompose_f (circleMap 0 R a) t₀ t₁) | ||||
|  | ||||
|     apply Set.Countable.mono t₀ | ||||
|     apply Set.Countable.preimage_circleMap | ||||
| @@ -147,14 +150,14 @@ theorem jensen_case_R_eq_one' | ||||
|     simp | ||||
|  | ||||
|  | ||||
|   have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) | ||||
|     = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) | ||||
|         + ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by | ||||
|   have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x) | ||||
|     = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 R x)))) | ||||
|         + ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - ↑x)) := by | ||||
|     dsimp [G] | ||||
|  | ||||
|     rw [intervalIntegral.integral_add] | ||||
|     congr | ||||
|     have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) ⊆ h₃f.toFinset := by | ||||
|     have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 R x - s))) ⊆ h₃f.toFinset := by | ||||
|       intro s hs | ||||
|       simp at hs | ||||
|       simp [hs.1] | ||||
| @@ -164,8 +167,8 @@ theorem jensen_case_R_eq_one' | ||||
|       intro x | ||||
|       rw [finsum_eq_sum_of_support_subset _ t₀] | ||||
|     rw [intervalIntegral.integral_finset_sum] | ||||
|     let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x)) | ||||
|     have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))) ⊆ h₃f.toFinset := by | ||||
|     let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x)) | ||||
|     have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))) ⊆ h₃f.toFinset := by | ||||
|       simp | ||||
|       intro s | ||||
|       contrapose! | ||||
| @@ -182,14 +185,15 @@ theorem jensen_case_R_eq_one' | ||||
|     intro i _ | ||||
|     apply IntervalIntegrable.const_mul | ||||
|     --simp at this | ||||
|     by_cases h₂i : ‖i‖ = 1 | ||||
|     by_cases h₂i : ‖i‖ = R | ||||
|     -- case pos | ||||
|     exact int'₂ h₂i | ||||
|     sorry | ||||
|     --exact int'₂ h₂i | ||||
|     -- case neg | ||||
|     apply Continuous.intervalIntegrable | ||||
|     apply continuous_iff_continuousAt.2 | ||||
|     intro x | ||||
|     have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) := | ||||
|     have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) := | ||||
|       rfl | ||||
|     rw [this] | ||||
|     apply ContinuousAt.comp | ||||
| @@ -201,9 +205,10 @@ theorem jensen_case_R_eq_one' | ||||
|       arg 1 | ||||
|       rw [← ha'] | ||||
|       rw [Complex.norm_eq_abs] | ||||
|       rw [abs_circleMap_zero 1 x] | ||||
|       rw [abs_circleMap_zero R x] | ||||
|       simp | ||||
|     tauto | ||||
|     linarith | ||||
|     -- | ||||
|     apply ContinuousAt.comp | ||||
|     apply Complex.continuous_abs.continuousAt | ||||
|     fun_prop | ||||
| @@ -211,13 +216,18 @@ theorem jensen_case_R_eq_one' | ||||
|     apply Continuous.intervalIntegrable | ||||
|     apply continuous_iff_continuousAt.2 | ||||
|     intro x | ||||
|     have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) := | ||||
|     have : (fun x => log (Complex.abs (F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 R x) := | ||||
|       rfl | ||||
|     rw [this] | ||||
|     apply ContinuousAt.comp | ||||
|     apply Real.continuousAt_log | ||||
|     simp | ||||
|     exact h₃F ⟨(circleMap 0 1 x), (by simp)⟩ | ||||
|     have : (circleMap 0 R x) ∈ (Metric.closedBall 0 R) := by | ||||
|       simp | ||||
|       rw [abs_le] | ||||
|       simp [hR] | ||||
|       exact le_of_lt hR | ||||
|     exact h₃F ⟨(circleMap 0 R x), this⟩ | ||||
|  | ||||
|     -- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x | ||||
|     apply ContinuousAt.comp | ||||
| @@ -225,7 +235,8 @@ theorem jensen_case_R_eq_one' | ||||
|     apply ContinuousAt.comp | ||||
|     apply DifferentiableAt.continuousAt (𝕜 := ℂ) | ||||
|     apply AnalyticAt.differentiableAt | ||||
|     exact h₂F (circleMap 0 1 x) (by simp) | ||||
|     apply h₂F (circleMap 0 R x) | ||||
|     simp; rw [abs_le]; simp [hR]; exact le_of_lt hR | ||||
|     -- ContinuousAt (fun x => circleMap 0 1 x) x | ||||
|     apply Continuous.continuousAt | ||||
|     apply continuous_circleMap | ||||
| @@ -245,15 +256,16 @@ theorem jensen_case_R_eq_one' | ||||
|     apply IntervalIntegrable.const_mul | ||||
|     --have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2 | ||||
|     --simp at this | ||||
|     by_cases h₂i : ‖i‖ = 1 | ||||
|     by_cases h₂i : ‖i‖ = R | ||||
|     -- case pos | ||||
|     exact int'₂ h₂i | ||||
|     --exact int'₂ h₂i | ||||
|     sorry | ||||
|     -- case neg | ||||
|     --have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry | ||||
|     apply Continuous.intervalIntegrable | ||||
|     apply continuous_iff_continuousAt.2 | ||||
|     intro x | ||||
|     have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) := | ||||
|     have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) := | ||||
|       rfl | ||||
|     rw [this] | ||||
|     apply ContinuousAt.comp | ||||
| @@ -265,33 +277,34 @@ theorem jensen_case_R_eq_one' | ||||
|       arg 1 | ||||
|       rw [← ha'] | ||||
|       rw [Complex.norm_eq_abs] | ||||
|       rw [abs_circleMap_zero 1 x] | ||||
|       rw [abs_circleMap_zero R x] | ||||
|       simp | ||||
|     tauto | ||||
|     linarith | ||||
|     apply ContinuousAt.comp | ||||
|     apply Complex.continuous_abs.continuousAt | ||||
|     fun_prop | ||||
|  | ||||
|   have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by | ||||
|   have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 R x)‖) = 2 * Real.pi * log ‖F 0‖ := by | ||||
|     let logAbsF := fun w ↦ Real.log ‖F w‖ | ||||
|     have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by | ||||
|     have t₀ : ∀ z ∈ Metric.closedBall 0 R, HarmonicAt logAbsF z := by | ||||
|       intro z hz | ||||
|       apply logabs_of_holomorphicAt_is_harmonic | ||||
|       exact AnalyticAt.holomorphicAt (h₂F z hz) | ||||
|       exact h₃F ⟨z, hz⟩ | ||||
|  | ||||
|     apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀ | ||||
|     apply harmonic_meanValue₁ R hR t₀ | ||||
|  | ||||
|  | ||||
|   simp_rw [← Complex.norm_eq_abs] at decompose_int_G | ||||
|   rw [t₁] at decompose_int_G | ||||
|  | ||||
|  | ||||
|   have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖) ⊆ ↑h₃f.toFinset := by | ||||
|   have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖) ⊆ ↑h₃f.toFinset := by | ||||
|     intro s hs | ||||
|     simp at hs | ||||
|     simp [hs.1] | ||||
|   rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G | ||||
|   have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖ = 0 := by | ||||
|   have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖ = 0 := by | ||||
|     apply Finset.sum_eq_zero | ||||
|     intro x hx | ||||
|     rw [int₃ _] | ||||
| @@ -359,170 +372,3 @@ theorem jensen_case_R_eq_one' | ||||
|   rw [h₂f] at hx | ||||
|   tauto | ||||
|   assumption | ||||
|  | ||||
|  | ||||
|  | ||||
| lemma const_mul_circleMap_zero' | ||||
|   {R θ : ℝ} : | ||||
|   circleMap 0 R θ = R * circleMap 0 1 θ := by | ||||
|   rw [circleMap_zero, circleMap_zero] | ||||
|   simp | ||||
|  | ||||
|  | ||||
|  | ||||
| theorem jensen' | ||||
|   {R : ℝ} | ||||
|   (hR : 0 < R) | ||||
|   (f : ℂ → ℂ) | ||||
|   (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) | ||||
|   (h₂f : f 0 ≠ 0) : | ||||
|   log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by | ||||
|  | ||||
|  | ||||
|   let ℓ : ℂ ≃L[ℂ] ℂ := | ||||
|   { | ||||
|     toFun := fun x ↦ R * x | ||||
|     map_add' := fun x y => DistribSMul.smul_add R x y | ||||
|     map_smul' := fun m x => mul_smul_comm m (↑R) x | ||||
|     invFun := fun x ↦ R⁻¹ * x | ||||
|     left_inv := by | ||||
|       intro x | ||||
|       simp | ||||
|       rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one] | ||||
|       simp | ||||
|       exact ne_of_gt hR | ||||
|     right_inv := by | ||||
|       intro x | ||||
|       simp | ||||
|       rw [← mul_assoc, mul_inv_cancel₀, one_mul] | ||||
|       simp | ||||
|       exact ne_of_gt hR | ||||
|     continuous_toFun := continuous_const_smul R | ||||
|     continuous_invFun := continuous_const_smul R⁻¹ | ||||
|   } | ||||
|  | ||||
|  | ||||
|   let F := f ∘ ℓ | ||||
|  | ||||
|   have h₁F : StronglyMeromorphicOn F (Metric.closedBall 0 1) := by | ||||
|     sorry | ||||
| /- | ||||
|     apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R) | ||||
|     exact h₁f | ||||
|     intro x _ | ||||
|     apply ℓ.toContinuousLinearMap.analyticAt x | ||||
|  | ||||
|     intro x hx | ||||
|     have : ℓ x = R * x := by rfl | ||||
|     rw [this] | ||||
|     simp | ||||
|     simp at hx | ||||
|     rw [abs_of_pos hR] | ||||
|     calc R * Complex.abs x | ||||
|     _ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx | ||||
|     _ = R := by simp | ||||
| -/ | ||||
|   have h₂F : F 0 ≠ 0 := by | ||||
|     dsimp [F] | ||||
|     have : ℓ 0 = R * 0 := by rfl | ||||
|     rw [this] | ||||
|     simpa | ||||
|  | ||||
|   let A := jensen_case_R_eq_one' F h₁F h₂F | ||||
|  | ||||
|   dsimp [F] at A | ||||
|   have {x : ℂ} : ℓ x = R * x := by rfl | ||||
|   repeat | ||||
|     simp_rw [this] at A | ||||
|   simp at A | ||||
|   simp | ||||
|   rw [A] | ||||
|   simp_rw [← const_mul_circleMap_zero'] | ||||
|   simp | ||||
|  | ||||
|   let e : (Metric.closedBall (0 : ℂ) 1) → (Metric.closedBall (0 : ℂ) R) := by | ||||
|     intro ⟨x, hx⟩ | ||||
|     have hy : R • x ∈ Metric.closedBall (0 : ℂ) R := by | ||||
|       simp | ||||
|       simp at hx | ||||
|       have : R = |R| := by exact Eq.symm (abs_of_pos hR) | ||||
|       rw [← this] | ||||
|       norm_num | ||||
|       calc R * Complex.abs x | ||||
|       _ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx | ||||
|       _ = R := by simp | ||||
|     exact ⟨R • x, hy⟩ | ||||
|  | ||||
|   let e' : (Metric.closedBall (0 : ℂ) R) → (Metric.closedBall (0 : ℂ) 1) := by | ||||
|     intro ⟨x, hx⟩ | ||||
|     have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ℂ) 1 := by | ||||
|       simp | ||||
|       simp at hx | ||||
|       have : R = |R| := by exact Eq.symm (abs_of_pos hR) | ||||
|       rw [← this] | ||||
|       norm_num | ||||
|       calc R⁻¹ * Complex.abs x | ||||
|       _ ≤ R⁻¹ * R := by | ||||
|         apply mul_le_mul_of_nonneg_left hx | ||||
|         apply inv_nonneg.mpr | ||||
|         exact abs_eq_self.mp (id (Eq.symm this)) | ||||
|       _ = 1 := by | ||||
|         apply inv_mul_cancel₀ | ||||
|         exact Ne.symm (ne_of_lt hR) | ||||
|     exact ⟨R⁻¹ • x, hy⟩ | ||||
|  | ||||
|   apply finsum_eq_of_bijective e | ||||
|  | ||||
|  | ||||
|   apply Function.bijective_iff_has_inverse.mpr | ||||
|   use e' | ||||
|   constructor | ||||
|   · apply Function.leftInverse_iff_comp.mpr | ||||
|     funext x | ||||
|     dsimp only [e, e',  id_eq, eq_mp_eq_cast, Function.comp_apply] | ||||
|     conv => | ||||
|       left | ||||
|       arg 1 | ||||
|       rw [← smul_assoc, smul_eq_mul] | ||||
|       rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))] | ||||
|       rw [one_smul] | ||||
|   · apply Function.rightInverse_iff_comp.mpr | ||||
|     funext x | ||||
|     dsimp only [e, e',  id_eq, eq_mp_eq_cast, Function.comp_apply] | ||||
|     conv => | ||||
|       left | ||||
|       arg 1 | ||||
|       rw [← smul_assoc, smul_eq_mul] | ||||
|       rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))] | ||||
|       rw [one_smul] | ||||
|  | ||||
|   intro x | ||||
|   simp | ||||
|   by_cases hx : x = (0 : ℂ) | ||||
|   rw [hx] | ||||
|   simp | ||||
|  | ||||
|   rw [log_mul, log_mul, log_inv, log_inv] | ||||
|   have : R = |R| := by exact Eq.symm (abs_of_pos hR) | ||||
|   rw [← this] | ||||
|   simp | ||||
|   left | ||||
|   congr 1 | ||||
|  | ||||
|   dsimp [AnalyticOnNhd.order] | ||||
|   rw [← AnalyticAt.order_comp_CLE ℓ] | ||||
|  | ||||
|   -- | ||||
|   simpa | ||||
|   -- | ||||
|   have : R = |R| := by exact Eq.symm (abs_of_pos hR) | ||||
|   rw [← this] | ||||
|   apply inv_ne_zero | ||||
|   exact Ne.symm (ne_of_lt hR) | ||||
|   -- | ||||
|   exact Ne.symm (ne_of_lt hR) | ||||
|   -- | ||||
|   simp | ||||
|   constructor | ||||
|   · assumption | ||||
|   · exact Ne.symm (ne_of_lt hR) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus