diff --git a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean index 23bb8df..3ace982 100644 --- a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean +++ b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean @@ -11,28 +11,30 @@ import Nevanlinna.meromorphicOn_divisor open Real - -theorem jensen_case_R_eq_one' +theorem jensen + {R : ℝ} + (hR : 0 < R) (f : ℂ → ℂ) - (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 1)) + (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) (h₂f : f 0 ≠ 0) : - log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by + log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by - have h₁U : IsConnected (Metric.closedBall (0 : ℂ) 1) := by + have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by constructor - · apply Metric.nonempty_closedBall.mpr (by simp) - · exact (convex_closedBall (0 : ℂ) 1).isPreconnected + · apply Metric.nonempty_closedBall.mpr + exact le_of_lt hR + · exact (convex_closedBall (0 : ℂ) R).isPreconnected - have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := - isCompact_closedBall 0 1 + have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := + isCompact_closedBall 0 R - have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by - use ⟨0, Metric.mem_closedBall_self (by simp)⟩ + have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by + use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩ have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor - have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by + have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by intro x contrapose simp @@ -63,7 +65,7 @@ theorem jensen_case_R_eq_one' rw [hs] simp - have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by + have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) R, f z ≠ 0 → log ‖f z‖ = G z := by intro z h₁z h₂z rw [h₄F] @@ -104,40 +106,41 @@ theorem jensen_case_R_eq_one' simpa - have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by + have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 R x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x) := by rw [intervalIntegral.integral_congr_ae] rw [MeasureTheory.ae_iff] apply Set.Countable.measure_zero simp - have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)} - ⊆ (circleMap 0 1)⁻¹' (h₃f.toFinset) := by + have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 R a)‖ = G (circleMap 0 R a)} + ⊆ (circleMap 0 R)⁻¹' (h₃f.toFinset) := by intro a ha simp at ha simp by_contra C - have t₀ : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := - circleMap_mem_closedBall 0 (zero_le_one' ℝ) a - have t₁ : f (circleMap 0 1 a) ≠ 0 := by - let A := h₁f (circleMap 0 1 a) t₀ + have t₀ : (circleMap 0 R a) ∈ Metric.closedBall 0 R := by + apply circleMap_mem_closedBall + exact le_of_lt hR + have t₁ : f (circleMap 0 R a) ≠ 0 := by + let A := h₁f (circleMap 0 R a) t₀ rw [← A.order_eq_zero_iff] unfold MeromorphicOn.divisor at C simp [t₀] at C rcases C with C₁|C₂ · assumption · let B := h₁f.meromorphicOn.order_ne_top' h₁U - let C := fun q ↦ B q ⟨(circleMap 0 1 a), t₀⟩ + let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩ rw [C₂] at C - have : ∃ u : (Metric.closedBall (0 : ℂ) 1), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by - use ⟨(0 : ℂ), (by simp)⟩ - let H := h₁f 0 (by simp) + have : ∃ u : (Metric.closedBall (0 : ℂ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by + use ⟨(0 : ℂ), (by simp; exact le_of_lt hR)⟩ + let H := h₁f 0 (by simp; exact le_of_lt hR) let K := H.order_eq_zero_iff.2 h₂f rw [K] simp let D := C this tauto - exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁) + exact ha.2 (decompose_f (circleMap 0 R a) t₀ t₁) apply Set.Countable.mono t₀ apply Set.Countable.preimage_circleMap @@ -147,14 +150,14 @@ theorem jensen_case_R_eq_one' simp - have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) - = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) - + ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by + have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x) + = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 R x)))) + + ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - ↑x)) := by dsimp [G] rw [intervalIntegral.integral_add] congr - have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) ⊆ h₃f.toFinset := by + have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 R x - s))) ⊆ h₃f.toFinset := by intro s hs simp at hs simp [hs.1] @@ -164,8 +167,8 @@ theorem jensen_case_R_eq_one' intro x rw [finsum_eq_sum_of_support_subset _ t₀] rw [intervalIntegral.integral_finset_sum] - let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x)) - have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))) ⊆ h₃f.toFinset := by + let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x)) + have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))) ⊆ h₃f.toFinset := by simp intro s contrapose! @@ -182,14 +185,15 @@ theorem jensen_case_R_eq_one' intro i _ apply IntervalIntegrable.const_mul --simp at this - by_cases h₂i : ‖i‖ = 1 + by_cases h₂i : ‖i‖ = R -- case pos - exact int'₂ h₂i + sorry + --exact int'₂ h₂i -- case neg apply Continuous.intervalIntegrable apply continuous_iff_continuousAt.2 intro x - have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) := + have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) := rfl rw [this] apply ContinuousAt.comp @@ -201,9 +205,10 @@ theorem jensen_case_R_eq_one' arg 1 rw [← ha'] rw [Complex.norm_eq_abs] - rw [abs_circleMap_zero 1 x] + rw [abs_circleMap_zero R x] simp - tauto + linarith + -- apply ContinuousAt.comp apply Complex.continuous_abs.continuousAt fun_prop @@ -211,13 +216,18 @@ theorem jensen_case_R_eq_one' apply Continuous.intervalIntegrable apply continuous_iff_continuousAt.2 intro x - have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) := + have : (fun x => log (Complex.abs (F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 R x) := rfl rw [this] apply ContinuousAt.comp apply Real.continuousAt_log simp - exact h₃F ⟨(circleMap 0 1 x), (by simp)⟩ + have : (circleMap 0 R x) ∈ (Metric.closedBall 0 R) := by + simp + rw [abs_le] + simp [hR] + exact le_of_lt hR + exact h₃F ⟨(circleMap 0 R x), this⟩ -- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x apply ContinuousAt.comp @@ -225,7 +235,8 @@ theorem jensen_case_R_eq_one' apply ContinuousAt.comp apply DifferentiableAt.continuousAt (𝕜 := ℂ) apply AnalyticAt.differentiableAt - exact h₂F (circleMap 0 1 x) (by simp) + apply h₂F (circleMap 0 R x) + simp; rw [abs_le]; simp [hR]; exact le_of_lt hR -- ContinuousAt (fun x => circleMap 0 1 x) x apply Continuous.continuousAt apply continuous_circleMap @@ -245,15 +256,16 @@ theorem jensen_case_R_eq_one' apply IntervalIntegrable.const_mul --have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2 --simp at this - by_cases h₂i : ‖i‖ = 1 + by_cases h₂i : ‖i‖ = R -- case pos - exact int'₂ h₂i + --exact int'₂ h₂i + sorry -- case neg --have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry apply Continuous.intervalIntegrable apply continuous_iff_continuousAt.2 intro x - have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) := + have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) := rfl rw [this] apply ContinuousAt.comp @@ -265,33 +277,34 @@ theorem jensen_case_R_eq_one' arg 1 rw [← ha'] rw [Complex.norm_eq_abs] - rw [abs_circleMap_zero 1 x] + rw [abs_circleMap_zero R x] simp - tauto + linarith apply ContinuousAt.comp apply Complex.continuous_abs.continuousAt fun_prop - have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by + have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 R x)‖) = 2 * Real.pi * log ‖F 0‖ := by let logAbsF := fun w ↦ Real.log ‖F w‖ - have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by + have t₀ : ∀ z ∈ Metric.closedBall 0 R, HarmonicAt logAbsF z := by intro z hz apply logabs_of_holomorphicAt_is_harmonic exact AnalyticAt.holomorphicAt (h₂F z hz) exact h₃F ⟨z, hz⟩ - apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀ + apply harmonic_meanValue₁ R hR t₀ + simp_rw [← Complex.norm_eq_abs] at decompose_int_G rw [t₁] at decompose_int_G - have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖) ⊆ ↑h₃f.toFinset := by + have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖) ⊆ ↑h₃f.toFinset := by intro s hs simp at hs simp [hs.1] rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G - have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖ = 0 := by + have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖ = 0 := by apply Finset.sum_eq_zero intro x hx rw [int₃ _] @@ -359,170 +372,3 @@ theorem jensen_case_R_eq_one' rw [h₂f] at hx tauto assumption - - - -lemma const_mul_circleMap_zero' - {R θ : ℝ} : - circleMap 0 R θ = R * circleMap 0 1 θ := by - rw [circleMap_zero, circleMap_zero] - simp - - - -theorem jensen' - {R : ℝ} - (hR : 0 < R) - (f : ℂ → ℂ) - (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) - (h₂f : f 0 ≠ 0) : - log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by - - - let ℓ : ℂ ≃L[ℂ] ℂ := - { - toFun := fun x ↦ R * x - map_add' := fun x y => DistribSMul.smul_add R x y - map_smul' := fun m x => mul_smul_comm m (↑R) x - invFun := fun x ↦ R⁻¹ * x - left_inv := by - intro x - simp - rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one] - simp - exact ne_of_gt hR - right_inv := by - intro x - simp - rw [← mul_assoc, mul_inv_cancel₀, one_mul] - simp - exact ne_of_gt hR - continuous_toFun := continuous_const_smul R - continuous_invFun := continuous_const_smul R⁻¹ - } - - - let F := f ∘ ℓ - - have h₁F : StronglyMeromorphicOn F (Metric.closedBall 0 1) := by - sorry -/- - apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R) - exact h₁f - intro x _ - apply ℓ.toContinuousLinearMap.analyticAt x - - intro x hx - have : ℓ x = R * x := by rfl - rw [this] - simp - simp at hx - rw [abs_of_pos hR] - calc R * Complex.abs x - _ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx - _ = R := by simp --/ - have h₂F : F 0 ≠ 0 := by - dsimp [F] - have : ℓ 0 = R * 0 := by rfl - rw [this] - simpa - - let A := jensen_case_R_eq_one' F h₁F h₂F - - dsimp [F] at A - have {x : ℂ} : ℓ x = R * x := by rfl - repeat - simp_rw [this] at A - simp at A - simp - rw [A] - simp_rw [← const_mul_circleMap_zero'] - simp - - let e : (Metric.closedBall (0 : ℂ) 1) → (Metric.closedBall (0 : ℂ) R) := by - intro ⟨x, hx⟩ - have hy : R • x ∈ Metric.closedBall (0 : ℂ) R := by - simp - simp at hx - have : R = |R| := by exact Eq.symm (abs_of_pos hR) - rw [← this] - norm_num - calc R * Complex.abs x - _ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx - _ = R := by simp - exact ⟨R • x, hy⟩ - - let e' : (Metric.closedBall (0 : ℂ) R) → (Metric.closedBall (0 : ℂ) 1) := by - intro ⟨x, hx⟩ - have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ℂ) 1 := by - simp - simp at hx - have : R = |R| := by exact Eq.symm (abs_of_pos hR) - rw [← this] - norm_num - calc R⁻¹ * Complex.abs x - _ ≤ R⁻¹ * R := by - apply mul_le_mul_of_nonneg_left hx - apply inv_nonneg.mpr - exact abs_eq_self.mp (id (Eq.symm this)) - _ = 1 := by - apply inv_mul_cancel₀ - exact Ne.symm (ne_of_lt hR) - exact ⟨R⁻¹ • x, hy⟩ - - apply finsum_eq_of_bijective e - - - apply Function.bijective_iff_has_inverse.mpr - use e' - constructor - · apply Function.leftInverse_iff_comp.mpr - funext x - dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply] - conv => - left - arg 1 - rw [← smul_assoc, smul_eq_mul] - rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))] - rw [one_smul] - · apply Function.rightInverse_iff_comp.mpr - funext x - dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply] - conv => - left - arg 1 - rw [← smul_assoc, smul_eq_mul] - rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))] - rw [one_smul] - - intro x - simp - by_cases hx : x = (0 : ℂ) - rw [hx] - simp - - rw [log_mul, log_mul, log_inv, log_inv] - have : R = |R| := by exact Eq.symm (abs_of_pos hR) - rw [← this] - simp - left - congr 1 - - dsimp [AnalyticOnNhd.order] - rw [← AnalyticAt.order_comp_CLE ℓ] - - -- - simpa - -- - have : R = |R| := by exact Eq.symm (abs_of_pos hR) - rw [← this] - apply inv_ne_zero - exact Ne.symm (ne_of_lt hR) - -- - exact Ne.symm (ne_of_lt hR) - -- - simp - constructor - · assumption - · exact Ne.symm (ne_of_lt hR)