Update holomorphic.primitive.lean
This commit is contained in:
parent
f43fd50528
commit
a9f1c3eaa6
|
@ -38,6 +38,7 @@ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countab
|
|||
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg
|
||||
Hdf Hdg Hi
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f : ℝ × ℝ → E)
|
||||
|
@ -65,7 +66,7 @@ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countab
|
|||
assumption
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₃
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f g : ℝ × ℝ → E)
|
||||
(h₁f : ContDiff ℝ 1 f)
|
||||
|
@ -84,11 +85,11 @@ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countab
|
|||
exact h₁g.continuous.continuousOn
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro x h₁x
|
||||
intro x _
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro y h₁y
|
||||
intro y _
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
||||
--
|
||||
apply ContinuousOn.integrableOn_compact
|
||||
|
@ -103,7 +104,7 @@ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countab
|
|||
|
||||
|
||||
theorem integral_divergence₄
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f g : ℂ → E)
|
||||
(h₁f : ContDiff ℝ 1 f)
|
||||
(h₁g : ContDiff ℝ 1 g)
|
||||
|
@ -113,27 +114,76 @@ theorem integral_divergence₄
|
|||
(b₂ : ℝ) :
|
||||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by
|
||||
|
||||
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅
|
||||
exact Set.countable_empty
|
||||
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
|
||||
exact h₁f.continuous.continuousOn
|
||||
--
|
||||
exact h₁g.continuous.continuousOn
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro x h₁x
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
||||
--
|
||||
rw [Set.diff_empty]
|
||||
intro y h₁y
|
||||
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
||||
--
|
||||
apply ContinuousOn.integrableOn_compact
|
||||
apply IsCompact.prod
|
||||
exact isCompact_uIcc
|
||||
exact isCompact_uIcc
|
||||
apply ContinuousOn.add
|
||||
apply Continuous.continuousOn
|
||||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
|
||||
apply Continuous.continuousOn
|
||||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
|
||||
let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm
|
||||
let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm
|
||||
|
||||
have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl
|
||||
have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl
|
||||
repeat (conv in f { re := _, im := _ } => rw [sfr])
|
||||
repeat (conv in g { re := _, im := _ } => rw [sgr])
|
||||
|
||||
have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by
|
||||
rw [fderiv.comp]
|
||||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||||
tauto
|
||||
apply Differentiable.differentiableAt
|
||||
exact h₁f.differentiable le_rfl
|
||||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||||
conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr']
|
||||
|
||||
have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by
|
||||
rw [fderiv.comp]
|
||||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||||
tauto
|
||||
apply Differentiable.differentiableAt
|
||||
exact h₁g.differentiable le_rfl
|
||||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||||
conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr']
|
||||
|
||||
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
|
||||
-- ContDiff ℝ 1 fr
|
||||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
|
||||
-- ContDiff ℝ 1 gr
|
||||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
|
||||
|
||||
|
||||
theorem integral_divergence₅
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(F : ℂ → ℂ)
|
||||
(hF : Differentiable ℂ F)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ) :
|
||||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := b₂ }) +
|
||||
(∫ (y : ℝ) in a₂..b₂, F { re := b₁, im := y })
|
||||
=
|
||||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := a₂ }) +
|
||||
(∫ (y : ℝ) in a₂..b₂, F { re := a₁, im := y }) := by
|
||||
|
||||
let f := F
|
||||
let h₁f : ContDiff ℝ 1 f := by sorry
|
||||
let g := Complex.I • F
|
||||
let h₁g : ContDiff ℝ 1 g := by sorry
|
||||
|
||||
let A := integral_divergence₄ f g h₁f h₁g a₁ a₂ b₁ b₂
|
||||
|
||||
have {z : ℂ} : fderiv ℝ f z 1 = partialDeriv ℝ 1 f z := by rfl
|
||||
conv at A in (fderiv ℝ f _) 1 => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ g z Complex.I = partialDeriv ℝ Complex.I g z := by rfl
|
||||
conv at A in (fderiv ℝ g _) Complex.I => rw [this]
|
||||
|
||||
have : Differentiable ℂ g := by sorry
|
||||
conv at A =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
arg 1
|
||||
intro y
|
||||
rw [CauchyRiemann₄ this]
|
||||
rw [partialDeriv_smul'₂]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
simp at A
|
||||
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue