Working…
This commit is contained in:
parent
a15d473434
commit
a6aba0fc68
@ -23,7 +23,6 @@ variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [Comple
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||||
|
||||
#check DifferentiableOn.contDiffOn
|
||||
|
||||
theorem holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
@ -67,6 +66,33 @@ theorem holomorphicAt_is_harmonicAt
|
||||
simp
|
||||
|
||||
|
||||
theorem re_of_holomorphicAt_is_harmonicAr
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.reCLM ∘ f) z := by
|
||||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem im_of_holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.imCLM ∘ f) z := by
|
||||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem antiholomorphicAt_is_harmonicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
HarmonicAt (Complex.conjCLE ∘ f) z := by
|
||||
apply harmonicAt_iff_comp_CLE_is_harmonicAt.1
|
||||
exact holomorphicAt_is_harmonicAt h
|
||||
|
||||
|
||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||
Harmonic f := by
|
||||
|
||||
|
@ -195,6 +195,39 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l :
|
||||
exact IsOpen.mem_nhds hs zHyp
|
||||
|
||||
|
||||
theorem harmonicAt_comp_CLM_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
{z : ℂ}
|
||||
{l : F₁ →L[ℝ] G}
|
||||
(h : HarmonicAt f z) :
|
||||
HarmonicAt (l ∘ f) z := by
|
||||
|
||||
constructor
|
||||
· -- ContDiffAt ℝ 2 (⇑l ∘ f) z
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact h.1
|
||||
· -- Δ (⇑l ∘ f) =ᶠ[nhds z] 0
|
||||
obtain ⟨r, h₁r, h₂r⟩ := h.1.contDiffOn le_rfl
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁r
|
||||
obtain ⟨t, h₁t, h₂t⟩ := Filter.eventuallyEq_iff_exists_mem.1 h.2
|
||||
obtain ⟨u, h₁u, h₂u, h₃u⟩ := mem_nhds_iff.1 h₁t
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s ∩ u
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
exact IsOpen.inter h₂s h₂u
|
||||
constructor
|
||||
· exact h₃s
|
||||
· exact h₃u
|
||||
· intro x xHyp
|
||||
rw [laplace_compCLMAt]
|
||||
simp
|
||||
rw [h₂t]
|
||||
simp
|
||||
exact h₁u xHyp.2
|
||||
apply (h₂r.mono h₁s).contDiffAt (IsOpen.mem_nhds h₂s xHyp.1)
|
||||
|
||||
|
||||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||||
Harmonic f ↔ Harmonic (l ∘ f) := by
|
||||
|
||||
@ -210,6 +243,24 @@ theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ]
|
||||
exact harmonic_comp_CLM_is_harmonic
|
||||
|
||||
|
||||
theorem harmonicAt_iff_comp_CLE_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
{z : ℂ}
|
||||
{l : F₁ ≃L[ℝ] G₁} :
|
||||
HarmonicAt f z ↔ HarmonicAt (l ∘ f) z := by
|
||||
|
||||
constructor
|
||||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||
rw [this]
|
||||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
simp
|
||||
nth_rewrite 2 [this]
|
||||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||||
|
||||
|
||||
theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ ≃L[ℝ] G₁} (hs : IsOpen s) :
|
||||
HarmonicOn f s ↔ HarmonicOn (l ∘ f) s := by
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
@ -33,6 +32,28 @@ theorem HolomorphicAt_iff
|
||||
· assumption
|
||||
|
||||
|
||||
theorem HolomorphicAt_isOpen'
|
||||
{f : E → F} :
|
||||
IsOpen { x : E | HolomorphicAt f x } := by
|
||||
|
||||
rw [← subset_interior_iff_isOpen]
|
||||
intro x hx
|
||||
simp at hx
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
|
||||
use s
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· exact h₁s
|
||||
· intro x hx
|
||||
simp
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hx
|
||||
· exact h₃s
|
||||
· exact h₂s
|
||||
|
||||
/-
|
||||
theorem HolomorphicAt_isOpen
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
@ -62,7 +83,7 @@ theorem HolomorphicAt_isOpen
|
||||
· intro z hz
|
||||
obtain ⟨t, ht⟩ := (hf z hz)
|
||||
exact ht.2 z (mem_of_mem_nhds ht.1)
|
||||
|
||||
-/
|
||||
|
||||
theorem CauchyRiemann'₅
|
||||
{f : ℂ → F}
|
||||
|
@ -170,7 +170,11 @@ theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f)
|
||||
simp
|
||||
|
||||
|
||||
theorem laplace_compCLMAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : ContDiffAt ℝ 2 f x) :
|
||||
theorem laplace_compCLMAt
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
{x : ℂ}
|
||||
(h : ContDiffAt ℝ 2 f x) :
|
||||
Δ (l ∘ f) x = (l ∘ (Δ f)) x := by
|
||||
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
|
@ -361,7 +361,7 @@ theorem partialDeriv_commOn
|
||||
(fderiv ℝ (fun w => fderiv ℝ f w) z) v₁ v₂ = (fderiv ℝ (fun w => fderiv ℝ f w) z) v₂ v₁ := by
|
||||
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y ∈ s, HasFDerivAt f (f' y) y := by
|
||||
have h₀1 : ∀ y ∈ s, HasFDerivAt f (f' y) y := by
|
||||
intro y hy
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hy)
|
||||
@ -393,31 +393,8 @@ theorem partialDeriv_commAt
|
||||
(h : ContDiffAt ℝ 2 f z) :
|
||||
∀ v₁ v₂ : E, partialDeriv ℝ v₁ (partialDeriv ℝ v₂ f) z = partialDeriv ℝ v₂ (partialDeriv ℝ v₁ f) z := by
|
||||
|
||||
obtain ⟨u, hu₁, hu₂⟩ := h.contDiffOn le_rfl
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
|
||||
intro v₁ v₂
|
||||
|
||||
have derivSymm :
|
||||
(fderiv ℝ (fun w => fderiv ℝ f w) z) v₁ v₂ = (fderiv ℝ (fun w => fderiv ℝ f w) z) v₂ v₁ := by
|
||||
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y ∈ s, HasFDerivAt f (f' y) y := by
|
||||
intro y hy
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hy)
|
||||
apply h.differentiableOn one_le_two
|
||||
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 h).2
|
||||
|
||||
have h₀' : ∀ᶠ (y : E) in nhds z, HasFDerivAt f (f' y) y := by
|
||||
apply eventually_nhds_iff.mpr
|
||||
use s
|
||||
|
||||
exact second_derivative_symmetric_of_eventually h₀' h₁ v₁ v₂
|
||||
|
||||
rw [← partialDeriv_fderivAt ℝ hs h v₂ v₁ z hz]
|
||||
rw [derivSymm]
|
||||
rw [← partialDeriv_fderivOn ℝ hs h v₁ v₂ z hz]
|
||||
exact partialDeriv_commOn hv₂ (hu₂.mono hv₁) v₁ v₂ z hv₃
|
||||
|
Loading…
Reference in New Issue
Block a user