nevanlinna/Nevanlinna/holomorphic.lean

123 lines
3.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.Basic
import Nevanlinna.partialDeriv
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
def HolomorphicAt (f : E → F) (x : E) : Prop :=
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt f z
theorem HolomorphicAt_iff
{f : E → F}
{x : E} :
HolomorphicAt f x ↔ ∃ s : Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt f z) := by
constructor
· intro hf
obtain ⟨t, h₁t, h₂t⟩ := hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
use s
constructor
· assumption
· constructor
· assumption
· intro z hz
exact h₂t z (h₁s hz)
· intro hyp
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
use s
constructor
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
· assumption
theorem HolomorphicAt_isOpen'
{f : E → F} :
IsOpen { x : E | HolomorphicAt f x } := by
rw [← subset_interior_iff_isOpen]
intro x hx
simp at hx
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
use s
constructor
· simp
constructor
· exact h₁s
· intro x hx
simp
use s
constructor
· exact IsOpen.mem_nhds h₁s hx
· exact h₃s
· exact h₂s
/-
theorem HolomorphicAt_isOpen
{f : E → F}
{x : E} :
HolomorphicAt f x ↔ ∃ s : Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, HolomorphicAt f z) := by
constructor
· intro hf
obtain ⟨t, h₁t, h₂t⟩ := hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
use s
constructor
· assumption
· constructor
· assumption
· intro z hz
apply HolomorphicAt_iff.2
use s
constructor
· assumption
· constructor
· assumption
· exact fun w hw ↦ h₂t w (h₁s hw)
· intro hyp
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
use s
constructor
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
· intro z hz
obtain ⟨t, ht⟩ := (hf z hz)
exact ht.2 z (mem_of_mem_nhds ht.1)
-/
theorem CauchyRiemann'₅
{f : → F}
{z : }
(h : DifferentiableAt f z) :
partialDeriv Complex.I f z = Complex.I • partialDeriv 1 f z := by
unfold partialDeriv
conv =>
left
rw [DifferentiableAt.fderiv_restrictScalars h]
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
rw [ContinuousLinearMap.map_smul_of_tower (fderiv f z) Complex.I 1]
conv =>
right
right
rw [DifferentiableAt.fderiv_restrictScalars h]
theorem CauchyRiemann'₆
{f : → F}
{z : }
(h : HolomorphicAt f z) :
partialDeriv Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv 1 f := by
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
apply Filter.eventuallyEq_iff_exists_mem.2
use s
constructor
· exact IsOpen.mem_nhds h₁s hz
· intro w hw
apply CauchyRiemann'₅
exact h₂f w hw