Update cauchyRiemann.lean
This commit is contained in:
parent
90d3aceb95
commit
a5bf92552c
|
@ -11,40 +11,25 @@ import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
||||||
|
|
||||||
variable {z : ℂ} {f : ℂ → ℂ}
|
variable {z : ℂ} {f : ℂ → ℂ} {h : DifferentiableAt ℂ f z}
|
||||||
|
|
||||||
example (h : DifferentiableAt ℂ f z) : f z = 0 := by
|
|
||||||
|
|
||||||
|
theorem CauchyRiemann₁ : fderiv ℝ f z Complex.I = Complex.I * fderiv ℝ f z 1 := by
|
||||||
let A := fderiv ℂ f z
|
let A := fderiv ℂ f z
|
||||||
let B := fderiv ℝ f
|
have t₁ : A (Complex.I • 1) = Complex.I • (A 1) := by
|
||||||
|
|
||||||
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ
|
|
||||||
let D := ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)
|
|
||||||
let E := D 1
|
|
||||||
let F := D Complex.I
|
|
||||||
|
|
||||||
have : A (Complex.I • 1) = Complex.I • (A 1) := by
|
|
||||||
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
|
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
|
||||||
|
|
||||||
let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z))
|
let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z))
|
||||||
have : AR (Complex.I • 1) = Complex.I • (AR 1) := by
|
have t₂ : AR (Complex.I • 1) = Complex.I • (AR 1) := by
|
||||||
exact this
|
exact t₁
|
||||||
|
have t₂a : Complex.I * (AR 1) = Complex.I • (AR 1) := by
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
exact rfl
|
||||||
have : lineDeriv ℝ f z Complex.I = (fderiv ℝ f z) Complex.I := by
|
rw [← t₂a] at t₂
|
||||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
have t₂b : Complex.I • 1 = Complex.I := by
|
||||||
apply h.restrictScalars ℝ
|
simp
|
||||||
|
have t₂c : AR Complex.I = Complex.I • (AR 1) := by
|
||||||
have : D Complex.I = Complex.I * (D 1) := by
|
simp at t₂
|
||||||
-- x
|
exact t₂
|
||||||
|
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ
|
||||||
sorry
|
have t₃ : fderiv ℝ f z = ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z) := by
|
||||||
|
exact DifferentiableAt.fderiv_restrictScalars ℝ h
|
||||||
have : HasFDerivAt f A z := by
|
rw [t₃]
|
||||||
exact DifferentiableAt.hasFDerivAt h
|
exact t₂c
|
||||||
|
|
||||||
have : HasFDerivAt f (B z) z := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
Loading…
Reference in New Issue