diff --git a/nevanlinna/cauchyRiemann.lean b/nevanlinna/cauchyRiemann.lean index 5d649ed..dd5addf 100644 --- a/nevanlinna/cauchyRiemann.lean +++ b/nevanlinna/cauchyRiemann.lean @@ -11,40 +11,25 @@ import Mathlib.Analysis.Calculus.Conformal.NormedSpace import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars -variable {z : ℂ} {f : ℂ → ℂ} - -example (h : DifferentiableAt ℂ f z) : f z = 0 := by +variable {z : ℂ} {f : ℂ → ℂ} {h : DifferentiableAt ℂ f z} +theorem CauchyRiemann₁ : fderiv ℝ f z Complex.I = Complex.I * fderiv ℝ f z 1 := by let A := fderiv ℂ f z - let B := fderiv ℝ f - - let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ - let D := ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z) - let E := D 1 - let F := D Complex.I - - have : A (Complex.I • 1) = Complex.I • (A 1) := by + have t₁ : A (Complex.I • 1) = Complex.I • (A 1) := by exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1 - let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) - have : AR (Complex.I • 1) = Complex.I • (AR 1) := by - exact this - - let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩ - have : lineDeriv ℝ f z Complex.I = (fderiv ℝ f z) Complex.I := by - apply DifferentiableAt.lineDeriv_eq_fderiv - apply h.restrictScalars ℝ - - have : D Complex.I = Complex.I * (D 1) := by - -- x - - sorry - - have : HasFDerivAt f A z := by - exact DifferentiableAt.hasFDerivAt h - - have : HasFDerivAt f (B z) z := by - sorry - - - sorry + have t₂ : AR (Complex.I • 1) = Complex.I • (AR 1) := by + exact t₁ + have t₂a : Complex.I * (AR 1) = Complex.I • (AR 1) := by + exact rfl + rw [← t₂a] at t₂ + have t₂b : Complex.I • 1 = Complex.I := by + simp + have t₂c : AR Complex.I = Complex.I • (AR 1) := by + simp at t₂ + exact t₂ + let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ + have t₃ : fderiv ℝ f z = ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z) := by + exact DifferentiableAt.fderiv_restrictScalars ℝ h + rw [t₃] + exact t₂c