Update holomorphic_primitive2.lean
This commit is contained in:
parent
6bdb910b7c
commit
a2d3793df2
|
@ -533,7 +533,6 @@ theorem primitive_additivity'
|
|||
rw [← Complex.dist_eq_re_im]; simp
|
||||
exact hz₁
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω
|
||||
have h'₁ε : 0 < ε := by exact h₁ε
|
||||
|
||||
let ε' := (2 : ℝ)⁻¹ * ε
|
||||
|
||||
|
@ -571,20 +570,28 @@ theorem primitive_additivity'
|
|||
simp
|
||||
rw [Complex.dist_eq_re_im]
|
||||
|
||||
have : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1
|
||||
have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
||||
|
||||
have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
||||
have t₀ : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1
|
||||
have t₁ : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
||||
have t₂ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
||||
rw [Real.sqrt_lt_sqrt_iff]
|
||||
apply add_lt_add
|
||||
· dsimp [rx]
|
||||
|
||||
sorry
|
||||
· sorry
|
||||
· rw [sq_lt_sq]
|
||||
dsimp [dist] at t₀
|
||||
nth_rw 2 [abs_of_nonneg]
|
||||
assumption
|
||||
apply add_nonneg dist_nonneg (le_of_lt h₀ε)
|
||||
· rw [sq_lt_sq]
|
||||
dsimp [dist] at t₁
|
||||
nth_rw 2 [abs_of_nonneg]
|
||||
assumption
|
||||
apply add_nonneg dist_nonneg (le_of_lt h₀ε)
|
||||
apply add_nonneg
|
||||
exact sq_nonneg (x.re - z₀.re)
|
||||
exact sq_nonneg (x.im - z₀.im)
|
||||
|
||||
calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2)
|
||||
_ < √( rx ^ 2 + ry ^ 2) := by
|
||||
exact t₀
|
||||
exact t₂
|
||||
_ = d ε := by dsimp [d, rx, ry]
|
||||
_ < R := by exact h₁ε
|
||||
|
||||
|
|
Loading…
Reference in New Issue