diff --git a/Nevanlinna/holomorphic_primitive2.lean b/Nevanlinna/holomorphic_primitive2.lean index d30927b..cca5e24 100644 --- a/Nevanlinna/holomorphic_primitive2.lean +++ b/Nevanlinna/holomorphic_primitive2.lean @@ -533,7 +533,6 @@ theorem primitive_additivity' rw [← Complex.dist_eq_re_im]; simp exact hz₁ obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω - have h'₁ε : 0 < ε := by exact h₁ε let ε' := (2 : ℝ)⁻¹ * ε @@ -571,20 +570,28 @@ theorem primitive_additivity' simp rw [Complex.dist_eq_re_im] - have : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1 - have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2 - - have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by + have t₀ : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1 + have t₁ : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2 + have t₂ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by rw [Real.sqrt_lt_sqrt_iff] apply add_lt_add - · dsimp [rx] - - sorry - · sorry + · rw [sq_lt_sq] + dsimp [dist] at t₀ + nth_rw 2 [abs_of_nonneg] + assumption + apply add_nonneg dist_nonneg (le_of_lt h₀ε) + · rw [sq_lt_sq] + dsimp [dist] at t₁ + nth_rw 2 [abs_of_nonneg] + assumption + apply add_nonneg dist_nonneg (le_of_lt h₀ε) + apply add_nonneg + exact sq_nonneg (x.re - z₀.re) + exact sq_nonneg (x.im - z₀.im) calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) _ < √( rx ^ 2 + ry ^ 2) := by - exact t₀ + exact t₂ _ = d ε := by dsimp [d, rx, ry] _ < R := by exact h₁ε