Update meromorphicOn_integrability.lean

This commit is contained in:
Stefan Kebekus 2024-12-18 11:04:36 +01:00
parent cc7d96124c
commit a2b084f535

View File

@ -106,18 +106,65 @@ theorem MeromorphicOn.integrable_log_abs_f
(h₂f : ∃ u : (Metric.closedBall (0 : ) r), (h₁f u u.2).order ≠ ) :
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
have h₁U : IsCompact (Metric.closedBall (0 : ) r) := by sorry
have h₂U : IsConnected (Metric.closedBall (0 : ) r) := by sorry
have h₃U : interior (Metric.closedBall (0 : ) r) ≠ ∅ := by sorry
have h₁U : IsCompact (Metric.closedBall (0 : ) r) := isCompact_closedBall 0 r
have h₂U : IsConnected (Metric.closedBall (0 : ) r) := by
constructor
· exact Metric.nonempty_closedBall.mpr (le_of_lt hr)
· exact (convex_closedBall (0 : ) r).isPreconnected
have h₃U : interior (Metric.closedBall (0 : ) r) ≠ ∅ := by
rw [interior_closedBall, ← Set.nonempty_iff_ne_empty]
use 0; simp [hr];
repeat exact Ne.symm (ne_of_lt hr)
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
exact Divisor.finiteSupport h₁U h₁f.divisor
obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f
have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by
rfl
rw [this]
have : Metric.sphere (0 : ) |r| ⊆ Metric.closedBall (0 : ) r := by
sorry
rw [abs_of_pos hr]
apply Metric.sphere_subset_closedBall
rw [integrability_congr_changeDiscrete this h₃g]
apply IntervalIntegrable.add
sorry
--
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log ‖g (circleMap 0 r x)‖) = log ∘ Complex.abs ∘ g ∘ (fun x ↦ circleMap 0 r x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
· simp
have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ) r) := by
apply circleMap_mem_closedBall
exact le_of_lt hr
exact h₂g ⟨(circleMap 0 r x), this⟩
apply ContinuousAt.comp
· apply Continuous.continuousAt Complex.continuous_abs
apply ContinuousAt.comp
· have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ) r) := by
apply circleMap_mem_closedBall (0 : ) (le_of_lt hr) x
apply (h₁g (circleMap 0 r x) this).continuousAt
apply Continuous.continuousAt (continuous_circleMap 0 r)
--
have h {x : } : (Function.support fun s => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) ⊆ h₃f.toFinset := by
intro x; simp; tauto
simp_rw [finsum_eq_sum_of_support_subset _ h]
--let A := IntervalIntegrable.sum h₃f.toFinset
--have h : ∀ s ∈ h₃f.toFinset, IntervalIntegrable (f i) volume 0 (2 * π) := by
-- sorry
have : (fun x => ∑ s ∈ h₃f.toFinset, (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) = (∑ s ∈ h₃f.toFinset, fun x => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) := by
ext x; simp
rw [this]
apply IntervalIntegrable.sum h₃f.toFinset
intro s hs
apply IntervalIntegrable.const_mul
sorry