Update meromorphicOn_integrability.lean
This commit is contained in:
parent
cc7d96124c
commit
a2b084f535
@ -106,18 +106,65 @@ theorem MeromorphicOn.integrable_log_abs_f
|
||||
(h₂f : ∃ u : (Metric.closedBall (0 : ℂ) r), (h₁f u u.2).order ≠ ⊤) :
|
||||
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
|
||||
|
||||
have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := by sorry
|
||||
have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by sorry
|
||||
have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by sorry
|
||||
have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := isCompact_closedBall 0 r
|
||||
|
||||
have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by
|
||||
constructor
|
||||
· exact Metric.nonempty_closedBall.mpr (le_of_lt hr)
|
||||
· exact (convex_closedBall (0 : ℂ) r).isPreconnected
|
||||
|
||||
have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by
|
||||
rw [interior_closedBall, ← Set.nonempty_iff_ne_empty]
|
||||
use 0; simp [hr];
|
||||
repeat exact Ne.symm (ne_of_lt hr)
|
||||
|
||||
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
|
||||
exact Divisor.finiteSupport h₁U h₁f.divisor
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f
|
||||
have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by
|
||||
rfl
|
||||
rw [this]
|
||||
have : Metric.sphere (0 : ℂ) |r| ⊆ Metric.closedBall (0 : ℂ) r := by
|
||||
sorry
|
||||
rw [abs_of_pos hr]
|
||||
apply Metric.sphere_subset_closedBall
|
||||
|
||||
rw [integrability_congr_changeDiscrete this h₃g]
|
||||
|
||||
apply IntervalIntegrable.add
|
||||
sorry
|
||||
--
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log ‖g (circleMap 0 r x)‖) = log ∘ Complex.abs ∘ g ∘ (fun x ↦ circleMap 0 r x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
· simp
|
||||
have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by
|
||||
apply circleMap_mem_closedBall
|
||||
exact le_of_lt hr
|
||||
exact h₂g ⟨(circleMap 0 r x), this⟩
|
||||
apply ContinuousAt.comp
|
||||
· apply Continuous.continuousAt Complex.continuous_abs
|
||||
apply ContinuousAt.comp
|
||||
· have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by
|
||||
apply circleMap_mem_closedBall (0 : ℂ) (le_of_lt hr) x
|
||||
apply (h₁g (circleMap 0 r x) this).continuousAt
|
||||
apply Continuous.continuousAt (continuous_circleMap 0 r)
|
||||
--
|
||||
have h {x : ℝ} : (Function.support fun s => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) ⊆ h₃f.toFinset := by
|
||||
intro x; simp; tauto
|
||||
simp_rw [finsum_eq_sum_of_support_subset _ h]
|
||||
--let A := IntervalIntegrable.sum h₃f.toFinset
|
||||
--have h : ∀ s ∈ h₃f.toFinset, IntervalIntegrable (f i) volume 0 (2 * π) := by
|
||||
-- sorry
|
||||
have : (fun x => ∑ s ∈ h₃f.toFinset, (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) = (∑ s ∈ h₃f.toFinset, fun x => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) := by
|
||||
ext x; simp
|
||||
rw [this]
|
||||
apply IntervalIntegrable.sum h₃f.toFinset
|
||||
intro s hs
|
||||
apply IntervalIntegrable.const_mul
|
||||
|
||||
sorry
|
||||
|
Loading…
Reference in New Issue
Block a user