From a2b084f535f816a13590164cdb3f9f0c6d91c63a Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Wed, 18 Dec 2024 11:04:36 +0100 Subject: [PATCH] Update meromorphicOn_integrability.lean --- Nevanlinna/meromorphicOn_integrability.lean | 57 +++++++++++++++++++-- 1 file changed, 52 insertions(+), 5 deletions(-) diff --git a/Nevanlinna/meromorphicOn_integrability.lean b/Nevanlinna/meromorphicOn_integrability.lean index c43bf23..37fba7b 100644 --- a/Nevanlinna/meromorphicOn_integrability.lean +++ b/Nevanlinna/meromorphicOn_integrability.lean @@ -106,18 +106,65 @@ theorem MeromorphicOn.integrable_log_abs_f (h₂f : ∃ u : (Metric.closedBall (0 : ℂ) r), (h₁f u u.2).order ≠ ⊤) : IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by - have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := by sorry - have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by sorry - have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by sorry + have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := isCompact_closedBall 0 r + + have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by + constructor + · exact Metric.nonempty_closedBall.mpr (le_of_lt hr) + · exact (convex_closedBall (0 : ℂ) r).isPreconnected + + have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by + rw [interior_closedBall, ← Set.nonempty_iff_ne_empty] + use 0; simp [hr]; + repeat exact Ne.symm (ne_of_lt hr) + + have h₃f : Set.Finite (Function.support h₁f.divisor) := by + exact Divisor.finiteSupport h₁U h₁f.divisor obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by rfl rw [this] have : Metric.sphere (0 : ℂ) |r| ⊆ Metric.closedBall (0 : ℂ) r := by - sorry + rw [abs_of_pos hr] + apply Metric.sphere_subset_closedBall + rw [integrability_congr_changeDiscrete this h₃g] apply IntervalIntegrable.add - sorry + -- + apply Continuous.intervalIntegrable + apply continuous_iff_continuousAt.2 + intro x + have : (fun x => log ‖g (circleMap 0 r x)‖) = log ∘ Complex.abs ∘ g ∘ (fun x ↦ circleMap 0 r x) := + rfl + rw [this] + apply ContinuousAt.comp + apply Real.continuousAt_log + · simp + have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by + apply circleMap_mem_closedBall + exact le_of_lt hr + exact h₂g ⟨(circleMap 0 r x), this⟩ + apply ContinuousAt.comp + · apply Continuous.continuousAt Complex.continuous_abs + apply ContinuousAt.comp + · have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by + apply circleMap_mem_closedBall (0 : ℂ) (le_of_lt hr) x + apply (h₁g (circleMap 0 r x) this).continuousAt + apply Continuous.continuousAt (continuous_circleMap 0 r) + -- + have h {x : ℝ} : (Function.support fun s => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) ⊆ h₃f.toFinset := by + intro x; simp; tauto + simp_rw [finsum_eq_sum_of_support_subset _ h] + --let A := IntervalIntegrable.sum h₃f.toFinset + --have h : ∀ s ∈ h₃f.toFinset, IntervalIntegrable (f i) volume 0 (2 * π) := by + -- sorry + have : (fun x => ∑ s ∈ h₃f.toFinset, (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) = (∑ s ∈ h₃f.toFinset, fun x => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) := by + ext x; simp + rw [this] + apply IntervalIntegrable.sum h₃f.toFinset + intro s hs + apply IntervalIntegrable.const_mul + sorry