Working…
This commit is contained in:
parent
a34699ddbc
commit
9c53bb793a
|
@ -16,12 +16,56 @@ import Mathlib.Topology.Instances.RealVectorSpace
|
|||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.laplace
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphic
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||||
|
||||
#check DifferentiableOn.contDiffOn
|
||||
|
||||
theorem holomorphicAt_is_harmonicAt
|
||||
{f : ℂ → F₁}
|
||||
{z : ℂ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HarmonicAt f z := by
|
||||
|
||||
obtain ⟨s, hs, hz, h'f⟩ := HolomorphicAt_iff.1 hf
|
||||
|
||||
constructor
|
||||
· -- ContDiffAt ℝ 2 f z
|
||||
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff hs).2 hz)
|
||||
suffices h : ContDiffOn ℂ 2 f s from by
|
||||
apply ContDiffOn.restrict_scalars ℝ h
|
||||
apply DifferentiableOn.contDiffOn _ hs
|
||||
intro w hw
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
exact h'f w hw
|
||||
· -- Δ f =ᶠ[nhds z] 0
|
||||
obtain ⟨t, ht, hz, h'f⟩ := HolomorphicAt_isOpen.1 hf
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use t
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds ht hz
|
||||
· intro w hw
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
|
||||
rw [partialDeriv_eventuallyEq ℝ (CauchyRiemann'₆ (h'f w hw)) Complex.I]
|
||||
rw [partialDeriv_smul'₂]
|
||||
simp
|
||||
|
||||
have f_is_real_C2 : ContDiffOn ℝ 2 f t :=
|
||||
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h'f ht)
|
||||
rw [partialDeriv_commOn ht f_is_real_C2 Complex.I 1 w hw]
|
||||
rw [partialDeriv_eventuallyEq ℝ (CauchyRiemann'₆ (h'f w hw)) 1]
|
||||
rw [partialDeriv_smul'₂]
|
||||
simp
|
||||
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
|
||||
|
||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||
Harmonic f := by
|
||||
|
@ -115,9 +159,6 @@ theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpe
|
|||
simp
|
||||
rw [partialDeriv_commOn hs f_is_real_C2 Complex.I 1 z hz]
|
||||
|
||||
have : Complex.I • partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z = Complex.I • (partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z) := by
|
||||
rfl
|
||||
rw [this]
|
||||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
|
|
|
@ -31,6 +31,7 @@ def HarmonicAt (f : ℂ → F) (x : ℂ) : Prop :=
|
|||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
||||
|
||||
|
||||
theorem HarmonicAt_iff
|
||||
{f : ℂ → F}
|
||||
{x : ℂ} :
|
||||
|
|
|
@ -33,11 +33,42 @@ theorem HolomorphicAt_iff
|
|||
· assumption
|
||||
|
||||
|
||||
theorem CauchyRiemann₅
|
||||
theorem HolomorphicAt_isOpen
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x ↔ ∃ s : Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, HolomorphicAt f z) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
|
||||
use s
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
apply HolomorphicAt_iff.2
|
||||
use s
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· exact fun w hw ↦ h₂t w (h₁s hw)
|
||||
· intro hyp
|
||||
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
|
||||
use s
|
||||
constructor
|
||||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· intro z hz
|
||||
obtain ⟨t, ht⟩ := (hf z hz)
|
||||
exact ht.2 z (mem_of_mem_nhds ht.1)
|
||||
|
||||
|
||||
theorem CauchyRiemann'₅
|
||||
{f : ℂ → F}
|
||||
{z : ℂ} :
|
||||
(DifferentiableAt ℂ f z) → partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
intro h
|
||||
{z : ℂ}
|
||||
(h : DifferentiableAt ℂ f z) :
|
||||
partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
|
@ -53,11 +84,18 @@ theorem CauchyRiemann₅
|
|||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
|
||||
|
||||
theorem CauchyRiemann₆
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ} :
|
||||
(HolomorphicAt f z) → partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
theorem CauchyRiemann'₆
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
|
||||
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
|
||||
|
||||
|
||||
sorry
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hz
|
||||
· intro w hw
|
||||
apply CauchyRiemann'₅
|
||||
exact h₂f w hw
|
||||
|
|
|
@ -16,7 +16,11 @@ noncomputable def partialDeriv : E → (E → F) → (E → F) :=
|
|||
fun v ↦ (fun f ↦ (fun w ↦ fderiv 𝕜 f w v))
|
||||
|
||||
|
||||
theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[nhds x] f₂) : ∀ v : E, partialDeriv 𝕜 v f₁ =ᶠ[nhds x] partialDeriv 𝕜 v f₂ := by
|
||||
theorem partialDeriv_eventuallyEq'
|
||||
{f₁ f₂ : E → F}
|
||||
{x : E}
|
||||
(h : f₁ =ᶠ[nhds x] f₂) :
|
||||
∀ v : E, partialDeriv 𝕜 v f₁ =ᶠ[nhds x] partialDeriv 𝕜 v f₂ := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
|
|
Loading…
Reference in New Issue