Create holomorphic.lean

This commit is contained in:
Stefan Kebekus 2024-06-05 10:19:09 +02:00
parent 05582e5d83
commit a34699ddbc

View File

@ -0,0 +1,63 @@
import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Nevanlinna.partialDeriv
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
def HolomorphicAt (f : E → F) (x : E) : Prop :=
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt f z
theorem HolomorphicAt_iff
{f : E → F}
{x : E} :
HolomorphicAt f x ↔ ∃ s : Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt f z) := by
constructor
· intro hf
obtain ⟨t, h₁t, h₂t⟩ := hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
use s
constructor
· assumption
· constructor
· assumption
· intro z hz
exact h₂t z (h₁s hz)
· intro hyp
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
use s
constructor
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
· assumption
theorem CauchyRiemann₅
{f : → F}
{z : } :
(DifferentiableAt f z) → partialDeriv Complex.I f z = Complex.I • partialDeriv 1 f z := by
intro h
unfold partialDeriv
conv =>
left
rw [DifferentiableAt.fderiv_restrictScalars h]
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
rw [ContinuousLinearMap.map_smul_of_tower (fderiv f z) Complex.I 1]
conv =>
right
right
rw [DifferentiableAt.fderiv_restrictScalars h]
theorem CauchyRiemann₆
{f : }
{z : } :
(HolomorphicAt f z) → partialDeriv Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv 1 f := by
sorry