Update mathlib
This commit is contained in:
parent
6412671bc6
commit
9a9fbf1b54
|
@ -1,4 +1,4 @@
|
||||||
import Mathlib.Algebra.BigOperators.Basic
|
--import Mathlib.Algebra.BigOperators.Basic
|
||||||
import Mathlib.Analysis.InnerProductSpace.Basic
|
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||||
import Mathlib.Analysis.InnerProductSpace.Dual
|
import Mathlib.Analysis.InnerProductSpace.Dual
|
||||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||||
|
@ -9,31 +9,164 @@ open Finset
|
||||||
|
|
||||||
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
open BigOperators
|
||||||
open TensorProduct
|
open Finset
|
||||||
|
|
||||||
example : 0 = 1 := by
|
|
||||||
|
|
||||||
let B := (sesqFormOfInner (𝕜 := ℝ) (E := E)).flip
|
|
||||||
|
|
||||||
|
|
||||||
have e: E := by sorry
|
|
||||||
let C := B e
|
|
||||||
|
|
||||||
let α := InnerProductSpace.toDual ℝ E
|
|
||||||
|
|
||||||
let β : E →ₗ[ℝ] ℝ := by sorry
|
|
||||||
let YY := E ⊗[ℝ] E
|
|
||||||
|
|
||||||
let ZZ := TensorProduct.mapBilinear ℝ E E ℝ ℝ
|
|
||||||
|
|
||||||
|
|
||||||
let A : E × E → LinearMap.BilinForm ℝ E := by
|
|
||||||
unfold LinearMap.BilinForm
|
|
||||||
intro (e₁, e₂)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
lemma vectorPresentation
|
||||||
|
[Fintype ι]
|
||||||
|
(b : Basis ι ℝ E)
|
||||||
|
(hb : Orthonormal ℝ b)
|
||||||
|
(v : E) :
|
||||||
|
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
||||||
|
nth_rw 1 [← (b.sum_repr v)]
|
||||||
|
apply Fintype.sum_congr
|
||||||
|
intro i
|
||||||
|
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem BilinearCalc
|
||||||
|
[Fintype ι]
|
||||||
|
(v : Basis ι ℝ E)
|
||||||
|
(c : ι → ℝ)
|
||||||
|
(L : E →ₗ[ℝ] E →ₗ[ℝ] F)
|
||||||
|
: L (∑ j : ι, c j • v j) (∑ j : ι, c j • v j)
|
||||||
|
= ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L (v (x 0)) (v (x 1)) := by
|
||||||
|
|
||||||
|
rw [map_sum]
|
||||||
|
rw [map_sum]
|
||||||
|
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
arg 2
|
||||||
|
intro r
|
||||||
|
rw [← sum_apply]
|
||||||
|
|
||||||
|
rw [map_smul]
|
||||||
|
arg 2
|
||||||
|
arg 1
|
||||||
|
arg 2
|
||||||
|
intro x
|
||||||
|
rw [map_smul]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
lemma c2
|
||||||
|
[Fintype ι]
|
||||||
|
(b : Basis ι ℝ E)
|
||||||
|
(hb : Orthonormal ℝ b)
|
||||||
|
(x y : E) :
|
||||||
|
⟪x, y⟫_ℝ = ∑ i : ι, ⟪x, b i⟫_ℝ * ⟪y, b i⟫_ℝ := by
|
||||||
|
rw [vectorPresentation b hb x]
|
||||||
|
rw [vectorPresentation b hb y]
|
||||||
|
rw [Orthonormal.inner_sum hb]
|
||||||
|
simp
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro i'
|
||||||
|
rw [Orthonormal.inner_left_fintype hb]
|
||||||
|
rw [Orthonormal.inner_left_fintype hb]
|
||||||
|
|
||||||
|
|
||||||
|
lemma fin_sum
|
||||||
|
[Fintype ι]
|
||||||
|
(f : ι → ι → F) :
|
||||||
|
∑ r : Fin 2 → ι, f (r 0) (r 1) = ∑ r₀ : ι, (∑ r₁ : ι, f r₀ r₁) := by
|
||||||
|
|
||||||
|
rw [← Fintype.sum_prod_type']
|
||||||
|
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
|
||||||
|
intro x
|
||||||
|
dsimp
|
||||||
|
|
||||||
|
theorem TensorIndep
|
||||||
|
[Fintype ι] [DecidableEq ι]
|
||||||
|
(v₁ : Basis ι ℝ E)
|
||||||
|
(hv₁ : Orthonormal ℝ v₁)
|
||||||
|
(v₂ : Basis ι ℝ E)
|
||||||
|
(hv₂ : Orthonormal ℝ v₂) :
|
||||||
|
∑ i, (v₁ i) ⊗ₜ[ℝ] (v₁ i) = ∑ i, (v₂ i) ⊗ₜ[ℝ] (v₂ i) := by
|
||||||
|
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro i
|
||||||
|
rw [vectorPresentation v₁ hv₁ (v₂ i)]
|
||||||
|
rw [TensorProduct.sum_tmul]
|
||||||
|
arg 2
|
||||||
|
intro j
|
||||||
|
rw [TensorProduct.tmul_sum]
|
||||||
|
arg 2
|
||||||
|
intro a
|
||||||
|
rw [TensorProduct.tmul_smul]
|
||||||
|
arg 2
|
||||||
|
rw [TensorProduct.smul_tmul]
|
||||||
|
|
||||||
|
rw [Finset.sum_comm]
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro i
|
||||||
|
rw [Finset.sum_comm]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
theorem LaplaceIndep
|
||||||
|
[Fintype ι] [DecidableEq ι]
|
||||||
|
(v₁ : Basis ι ℝ E)
|
||||||
|
(hv₁ : Orthonormal ℝ v₁)
|
||||||
|
(v₂ : Basis ι ℝ E)
|
||||||
|
(hv₂ : Orthonormal ℝ v₂)
|
||||||
|
(L : E →ₗ[ℝ] E →ₗ[ℝ] F) :
|
||||||
|
∑ i, L (v₁ i) (v₁ i) = ∑ i, L (v₂ i) (v₂ i) := by
|
||||||
|
|
||||||
|
have vector_vs_function
|
||||||
|
{y : Fin 2 → ι}
|
||||||
|
{v : ι → E}
|
||||||
|
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
|
||||||
|
funext i
|
||||||
|
by_cases h : i = 0
|
||||||
|
· rw [h]
|
||||||
|
simp
|
||||||
|
· rw [Fin.eq_one_of_neq_zero i h]
|
||||||
|
simp
|
||||||
|
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro i
|
||||||
|
rw [vectorPresentation v₁ hv₁ (v₂ i)]
|
||||||
|
rw [BilinearCalc]
|
||||||
|
rw [Finset.sum_comm]
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro y
|
||||||
|
rw [← Finset.sum_smul]
|
||||||
|
rw [← c2 v₂ hv₂ (v₁ (y 0)) (v₁ (y 1))]
|
||||||
|
rw [vector_vs_function]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ℝ • L ![v₁ i₀, v₁ i₁]))]
|
||||||
|
|
||||||
|
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ℝ • L ![v₁ r₀, v₁ r₁] = 0 := by
|
||||||
|
intro r₁ hr₁
|
||||||
|
rw [orthonormal_iff_ite.1 hv₁]
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
arg 2
|
||||||
|
intro r₀
|
||||||
|
rw [Fintype.sum_eq_single r₀ xx]
|
||||||
|
rw [orthonormal_iff_ite.1 hv₁]
|
||||||
|
apply sum_congr
|
||||||
|
rfl
|
||||||
|
intro x _
|
||||||
|
rw [vector_vs_function]
|
||||||
|
simp
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
import Mathlib.Analysis.InnerProductSpace.Basic
|
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||||
import Mathlib.Analysis.InnerProductSpace.Dual
|
import Mathlib.Analysis.InnerProductSpace.Dual
|
||||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||||
import Mathlib.Algebra.BigOperators.Basic
|
--import Mathlib.Algebra.BigOperators.Basic
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||||
import Mathlib.LinearAlgebra.Basis
|
import Mathlib.LinearAlgebra.Basis
|
||||||
|
|
|
@ -31,10 +31,10 @@
|
||||||
{"url": "https://github.com/leanprover-community/ProofWidgets4",
|
{"url": "https://github.com/leanprover-community/ProofWidgets4",
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"rev": "e6b6247c61280c77ade6bbf0bc3c66a44fe2e0c5",
|
"rev": "87c1e7a427d8e21b6eaf8401f12897f52e2c3be9",
|
||||||
"name": "proofwidgets",
|
"name": "proofwidgets",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "v0.0.36",
|
"inputRev": "v0.0.38",
|
||||||
"inherited": true,
|
"inherited": true,
|
||||||
"configFile": "lakefile.lean"},
|
"configFile": "lakefile.lean"},
|
||||||
{"url": "https://github.com/leanprover/lean4-cli",
|
{"url": "https://github.com/leanprover/lean4-cli",
|
||||||
|
@ -58,7 +58,7 @@
|
||||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"rev": "9c4c6f78c9a1b7beba018504e284d497a3761af2",
|
"rev": "dcc73cfb2ce3763f830c52042fb8617e762dbf60",
|
||||||
"name": "mathlib",
|
"name": "mathlib",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": null,
|
"inputRev": null,
|
||||||
|
|
Loading…
Reference in New Issue