173 lines
3.6 KiB
Plaintext
173 lines
3.6 KiB
Plaintext
--import Mathlib.Algebra.BigOperators.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Dual
|
||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||
|
||
|
||
open BigOperators
|
||
open Finset
|
||
|
||
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
open BigOperators
|
||
open Finset
|
||
|
||
|
||
|
||
lemma vectorPresentation
|
||
[Fintype ι]
|
||
(b : Basis ι ℝ E)
|
||
(hb : Orthonormal ℝ b)
|
||
(v : E) :
|
||
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
||
nth_rw 1 [← (b.sum_repr v)]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
||
simp
|
||
|
||
|
||
theorem BilinearCalc
|
||
[Fintype ι]
|
||
(v : Basis ι ℝ E)
|
||
(c : ι → ℝ)
|
||
(L : E →ₗ[ℝ] E →ₗ[ℝ] F)
|
||
: L (∑ j : ι, c j • v j) (∑ j : ι, c j • v j)
|
||
= ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L (v (x 0)) (v (x 1)) := by
|
||
|
||
rw [map_sum]
|
||
rw [map_sum]
|
||
|
||
conv =>
|
||
left
|
||
arg 2
|
||
intro r
|
||
rw [← sum_apply]
|
||
|
||
rw [map_smul]
|
||
arg 2
|
||
arg 1
|
||
arg 2
|
||
intro x
|
||
rw [map_smul]
|
||
simp
|
||
|
||
|
||
lemma c2
|
||
[Fintype ι]
|
||
(b : Basis ι ℝ E)
|
||
(hb : Orthonormal ℝ b)
|
||
(x y : E) :
|
||
⟪x, y⟫_ℝ = ∑ i : ι, ⟪x, b i⟫_ℝ * ⟪y, b i⟫_ℝ := by
|
||
rw [vectorPresentation b hb x]
|
||
rw [vectorPresentation b hb y]
|
||
rw [Orthonormal.inner_sum hb]
|
||
simp
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro i'
|
||
rw [Orthonormal.inner_left_fintype hb]
|
||
rw [Orthonormal.inner_left_fintype hb]
|
||
|
||
|
||
lemma fin_sum
|
||
[Fintype ι]
|
||
(f : ι → ι → F) :
|
||
∑ r : Fin 2 → ι, f (r 0) (r 1) = ∑ r₀ : ι, (∑ r₁ : ι, f r₀ r₁) := by
|
||
|
||
rw [← Fintype.sum_prod_type']
|
||
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
|
||
intro x
|
||
dsimp
|
||
|
||
theorem TensorIndep
|
||
[Fintype ι] [DecidableEq ι]
|
||
(v₁ : Basis ι ℝ E)
|
||
(hv₁ : Orthonormal ℝ v₁)
|
||
(v₂ : Basis ι ℝ E)
|
||
(hv₂ : Orthonormal ℝ v₂) :
|
||
∑ i, (v₁ i) ⊗ₜ[ℝ] (v₁ i) = ∑ i, (v₂ i) ⊗ₜ[ℝ] (v₂ i) := by
|
||
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro i
|
||
rw [vectorPresentation v₁ hv₁ (v₂ i)]
|
||
rw [TensorProduct.sum_tmul]
|
||
arg 2
|
||
intro j
|
||
rw [TensorProduct.tmul_sum]
|
||
arg 2
|
||
intro a
|
||
rw [TensorProduct.tmul_smul]
|
||
arg 2
|
||
rw [TensorProduct.smul_tmul]
|
||
|
||
rw [Finset.sum_comm]
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro i
|
||
rw [Finset.sum_comm]
|
||
|
||
|
||
|
||
sorry
|
||
|
||
theorem LaplaceIndep
|
||
[Fintype ι] [DecidableEq ι]
|
||
(v₁ : Basis ι ℝ E)
|
||
(hv₁ : Orthonormal ℝ v₁)
|
||
(v₂ : Basis ι ℝ E)
|
||
(hv₂ : Orthonormal ℝ v₂)
|
||
(L : E →ₗ[ℝ] E →ₗ[ℝ] F) :
|
||
∑ i, L (v₁ i) (v₁ i) = ∑ i, L (v₂ i) (v₂ i) := by
|
||
|
||
have vector_vs_function
|
||
{y : Fin 2 → ι}
|
||
{v : ι → E}
|
||
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
|
||
funext i
|
||
by_cases h : i = 0
|
||
· rw [h]
|
||
simp
|
||
· rw [Fin.eq_one_of_neq_zero i h]
|
||
simp
|
||
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro i
|
||
rw [vectorPresentation v₁ hv₁ (v₂ i)]
|
||
rw [BilinearCalc]
|
||
rw [Finset.sum_comm]
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro y
|
||
rw [← Finset.sum_smul]
|
||
rw [← c2 v₂ hv₂ (v₁ (y 0)) (v₁ (y 1))]
|
||
rw [vector_vs_function]
|
||
simp
|
||
|
||
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ℝ • L ![v₁ i₀, v₁ i₁]))]
|
||
|
||
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ℝ • L ![v₁ r₀, v₁ r₁] = 0 := by
|
||
intro r₁ hr₁
|
||
rw [orthonormal_iff_ite.1 hv₁]
|
||
simp
|
||
tauto
|
||
|
||
conv =>
|
||
right
|
||
arg 2
|
||
intro r₀
|
||
rw [Fintype.sum_eq_single r₀ xx]
|
||
rw [orthonormal_iff_ite.1 hv₁]
|
||
apply sum_congr
|
||
rfl
|
||
intro x _
|
||
rw [vector_vs_function]
|
||
simp
|