Update holomorphic_zero.lean
This commit is contained in:
parent
7b1c861a92
commit
97293e3a60
|
@ -1,3 +1,4 @@
|
|||
import Mathlib.Topology.ContinuousOn
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.holomorphic
|
||||
|
||||
|
@ -243,10 +244,28 @@ theorem discreteZeros
|
|||
|
||||
theorem zeroDivisor_finiteOnCompact
|
||||
{f : ℂ → ℂ}
|
||||
{s : Set ℂ}
|
||||
(hs : IsCompact s) :
|
||||
Set.Finite (s ∩ Function.support (zeroDivisor f)) := by
|
||||
sorry
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0)
|
||||
(h₂U : IsCompact U) :
|
||||
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
|
||||
|
||||
have hinter : IsCompact (U ∩ Function.support (zeroDivisor f)) := by
|
||||
apply IsCompact.of_isClosed_subset h₂U
|
||||
rw [supportZeroSet]
|
||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||
exact IsCompact.isClosed h₂U
|
||||
exact isClosed_singleton
|
||||
assumption
|
||||
assumption
|
||||
assumption
|
||||
exact Set.inter_subset_left
|
||||
|
||||
apply hinter.finite
|
||||
apply DiscreteTopology.of_subset (s := Function.support (zeroDivisor f))
|
||||
exact discreteZeros (f := f)
|
||||
exact Set.inter_subset_right
|
||||
|
||||
|
||||
theorem eliminatingZeros
|
||||
|
|
Loading…
Reference in New Issue