Update holomorphic_zero.lean
This commit is contained in:
parent
7b1c861a92
commit
97293e3a60
|
@ -1,3 +1,4 @@
|
||||||
|
import Mathlib.Topology.ContinuousOn
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
import Nevanlinna.holomorphic
|
import Nevanlinna.holomorphic
|
||||||
|
|
||||||
|
@ -243,10 +244,28 @@ theorem discreteZeros
|
||||||
|
|
||||||
theorem zeroDivisor_finiteOnCompact
|
theorem zeroDivisor_finiteOnCompact
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{s : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hs : IsCompact s) :
|
(hU : IsPreconnected U)
|
||||||
Set.Finite (s ∩ Function.support (zeroDivisor f)) := by
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
sorry
|
(h₂f : ∃ z ∈ U, f z ≠ 0)
|
||||||
|
(h₂U : IsCompact U) :
|
||||||
|
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
|
||||||
|
|
||||||
|
have hinter : IsCompact (U ∩ Function.support (zeroDivisor f)) := by
|
||||||
|
apply IsCompact.of_isClosed_subset h₂U
|
||||||
|
rw [supportZeroSet]
|
||||||
|
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||||
|
exact IsCompact.isClosed h₂U
|
||||||
|
exact isClosed_singleton
|
||||||
|
assumption
|
||||||
|
assumption
|
||||||
|
assumption
|
||||||
|
exact Set.inter_subset_left
|
||||||
|
|
||||||
|
apply hinter.finite
|
||||||
|
apply DiscreteTopology.of_subset (s := Function.support (zeroDivisor f))
|
||||||
|
exact discreteZeros (f := f)
|
||||||
|
exact Set.inter_subset_right
|
||||||
|
|
||||||
|
|
||||||
theorem eliminatingZeros
|
theorem eliminatingZeros
|
||||||
|
|
Loading…
Reference in New Issue