Update holomorphic_JensenFormula.lean

This commit is contained in:
Stefan Kebekus
2024-08-21 10:12:36 +02:00
parent 1160beac5e
commit 960af65b57

View File

@@ -5,31 +5,27 @@ import Nevanlinna.specialFunctions_CircleIntegral_affine
theorem jensen_case_R_eq_one theorem jensen_case_R_eq_one
(f : ) (f : )
(h₁f : Differentiable f) (h₁f : z Metric.closedBall (0 : ) 1, HolomorphicAt f z)
(h₂f : f 0 0) (h₂f : f 0 0)
(S : Finset ) (S : Finset )
(a : S ) (a : S )
(ha : s, a s Metric.ball 0 1) (ha : s, a s Metric.ball 0 1)
(F : ) (F : )
(h₁F : Differentiable F) (h₁F : z Metric.closedBall (0 : ) 1, HolomorphicAt F z)
(h₂F : z, F z 0) (h₂F : z Metric.closedBall (0 : ) 1, F z 0)
(h₃F : f = fun z (F z) * s : S, (z - a s)) (h₃F : f = fun z (F z) * s : S, (z - a s)) :
:
Real.log f 0 = - s, Real.log (a s⁻¹) + (2 * Real.pi)⁻¹ * (x : ) in (0)..2 * Real.pi, Real.log f (circleMap 0 1 x) := by Real.log f 0 = - s, Real.log (a s⁻¹) + (2 * Real.pi)⁻¹ * (x : ) in (0)..2 * Real.pi, Real.log f (circleMap 0 1 x) := by
let logAbsF := fun w Real.log F w let logAbsF := fun w Real.log F w
have t₀ : z Metric.ball 0 2, HarmonicAt logAbsF z := by have t₀ : z Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z _ intro z hz
apply logabs_of_holomorphicAt_is_harmonic apply logabs_of_holomorphicAt_is_harmonic
apply h₁F.holomorphicAt apply h₁F z hz
exact h₂F z exact h₂F z hz
have t₁ : ( (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by have t₁ : ( (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
have hR : (0 : ) < (1 : ) := by apply Real.zero_lt_one apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
have hρ : (1 : ) < (2 : ) := by linarith
apply harmonic_meanValue 2 1 hR hρ t₀
have t₂ : s, f (a s) = 0 := by have t₂ : s, f (a s) = 0 := by
intro s intro s
@@ -41,8 +37,8 @@ theorem jensen_case_R_eq_one
simp simp
let logAbsf := fun w Real.log f w let logAbsf := fun w Real.log f w
have s₀ : z, f z 0 logAbsf z = logAbsF z + s, Real.log z - a s := by have s₀ : z Metric.closedBall (0 : ) 1, f z 0 logAbsf z = logAbsF z + s, Real.log z - a s := by
intro z hz intro z h₁z h₂z
dsimp [logAbsf] dsimp [logAbsf]
rw [h₃F] rw [h₃F]
simp_rw [Complex.abs.map_mul] simp_rw [Complex.abs.map_mul]
@@ -53,31 +49,34 @@ theorem jensen_case_R_eq_one
intro s hs intro s hs
simp simp
by_contra ha' by_contra ha'
rw [ha'] at hz rw [ha'] at hz
exact hz (t₂ s) exact hz (t₂ s)
-- Complex.abs (F z) ≠ 0 -- Complex.abs (F z) ≠ 0
simp simp
exact h₂F z exact h₂F z h₁z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0 -- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra h' by_contra h'
obtain s, h's, h'' := Finset.prod_eq_zero_iff.1 h' obtain s, h's, h'' := Finset.prod_eq_zero_iff.1 h'
simp at h'' simp at h''
rw [h''] at hz rw [h''] at hz
let A := t₂ s let A := t₂ s
exact hz A exact hz A
have s₁ : z, f z 0 logAbsF z = logAbsf z - s, Real.log z - a s := by have s₁ : z Metric.closedBall (0 : ) 1, f z 0 logAbsF z = logAbsf z - s, Real.log z - a s := by
intro z hz intro z h₁z h₂z
rw [s₀ z hz] rw [s₀ z hz]
simp simp
assumption
rw [s₁ 0 h₂f] at t₁ have : 0 Metric.closedBall (0 : ) 1 := by simp
rw [s₁ 0 this h₂f] at t₁
have h₀ {x : } : f (circleMap 0 1 x) 0 := by have h₀ {x : } : f (circleMap 0 1 x) 0 := by
rw [h₃F] rw [h₃F]
simp simp
constructor constructor
· exact h₂F (circleMap 0 1 x) · have : (circleMap 0 1 x) Metric.closedBall (0 : ) 1 := by simp
exact h₂F (circleMap 0 1 x) this
· by_contra h' · by_contra h'
obtain s, _, h₂s := Finset.prod_eq_zero_iff.1 h' obtain s, _, h₂s := Finset.prod_eq_zero_iff.1 h'
have : circleMap 0 1 x = a s := by have : circleMap 0 1 x = a s := by
@@ -88,7 +87,8 @@ theorem jensen_case_R_eq_one
rw [ this] at A rw [ this] at A
simp at A simp at A
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁ have {θ} : (circleMap 0 1 θ) Metric.closedBall (0 : ) 1 := by simp
simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁
rw [intervalIntegral.integral_sub] at t₁ rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁ rw [intervalIntegral.integral_finset_sum] at t₁
@@ -133,7 +133,10 @@ theorem jensen_case_R_eq_one
apply ContinuousAt.comp apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp apply ContinuousAt.comp
apply h₁f.continuous.continuousAt apply ContDiffAt.continuousAt (f := f) (𝕜 := ) (n := 1)
apply HolomorphicAt.contDiffAt
apply h₁f
simp
let A := continuous_circleMap 0 1 let A := continuous_circleMap 0 1
apply A.continuousAt apply A.continuousAt
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi) -- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)