diff --git a/Nevanlinna/holomorphic_JensenFormula.lean b/Nevanlinna/holomorphic_JensenFormula.lean index d1ff315..daaf606 100644 --- a/Nevanlinna/holomorphic_JensenFormula.lean +++ b/Nevanlinna/holomorphic_JensenFormula.lean @@ -5,31 +5,27 @@ import Nevanlinna.specialFunctions_CircleIntegral_affine theorem jensen_case_R_eq_one (f : ℂ → ℂ) - (h₁f : Differentiable ℂ f) + (h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z) (h₂f : f 0 ≠ 0) (S : Finset ℕ) (a : S → ℂ) (ha : ∀ s, a s ∈ Metric.ball 0 1) (F : ℂ → ℂ) - (h₁F : Differentiable ℂ F) - (h₂F : ∀ z, F z ≠ 0) - (h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) - : + (h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z) + (h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0) + (h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) : Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by let logAbsF := fun w ↦ Real.log ‖F w‖ - have t₀ : ∀ z ∈ Metric.ball 0 2, HarmonicAt logAbsF z := by - intro z _ + have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by + intro z hz apply logabs_of_holomorphicAt_is_harmonic - apply h₁F.holomorphicAt - exact h₂F z + apply h₁F z hz + exact h₂F z hz have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by - have hR : (0 : ℝ) < (1 : ℝ) := by apply Real.zero_lt_one - have hρ : (1 : ℝ) < (2 : ℝ) := by linarith - apply harmonic_meanValue 2 1 hR hρ t₀ - + apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀ have t₂ : ∀ s, f (a s) = 0 := by intro s @@ -41,8 +37,8 @@ theorem jensen_case_R_eq_one simp let logAbsf := fun w ↦ Real.log ‖f w‖ - have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by - intro z hz + have s₀ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by + intro z h₁z h₂z dsimp [logAbsf] rw [h₃F] simp_rw [Complex.abs.map_mul] @@ -53,31 +49,34 @@ theorem jensen_case_R_eq_one intro s hs simp by_contra ha' - rw [ha'] at hz - exact hz (t₂ s) + rw [ha'] at h₂z + exact h₂z (t₂ s) -- Complex.abs (F z) ≠ 0 simp - exact h₂F z + exact h₂F z h₁z -- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0 by_contra h' obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h' simp at h'' - rw [h''] at hz + rw [h''] at h₂z let A := t₂ s - exact hz A + exact h₂z A - have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by - intro z hz - rw [s₀ z hz] + have s₁ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by + intro z h₁z h₂z + rw [s₀ z h₁z] simp + assumption - rw [s₁ 0 h₂f] at t₁ + have : 0 ∈ Metric.closedBall (0 : ℂ) 1 := by simp + rw [s₁ 0 this h₂f] at t₁ have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by rw [h₃F] simp constructor - · exact h₂F (circleMap 0 1 x) + · have : (circleMap 0 1 x) ∈ Metric.closedBall (0 : ℂ) 1 := by simp + exact h₂F (circleMap 0 1 x) this · by_contra h' obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h' have : circleMap 0 1 x = a s := by @@ -88,7 +87,8 @@ theorem jensen_case_R_eq_one rw [← this] at A simp at A - simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁ + have {θ} : (circleMap 0 1 θ) ∈ Metric.closedBall (0 : ℂ) 1 := by simp + simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁ rw [intervalIntegral.integral_sub] at t₁ rw [intervalIntegral.integral_finset_sum] at t₁ @@ -133,7 +133,10 @@ theorem jensen_case_R_eq_one apply ContinuousAt.comp apply Complex.continuous_abs.continuousAt apply ContinuousAt.comp - apply h₁f.continuous.continuousAt + apply ContDiffAt.continuousAt (f := f) (𝕜 := ℝ) (n := 1) + apply HolomorphicAt.contDiffAt + apply h₁f + simp let A := continuous_circleMap 0 1 apply A.continuousAt -- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)