Update holomorphic_primitive2.lean
This commit is contained in:
parent
fc3a4ae3f3
commit
951c25624e
|
@ -97,7 +97,16 @@ theorem primitive_fderivAtBasepointZero
|
||||||
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
||||||
apply Metric.ball_mem_nhds (f 0)
|
apply Metric.ball_mem_nhds (f 0)
|
||||||
linarith
|
linarith
|
||||||
exact eventually_nhds_iff.mp (continuousAt_def.1 hf (Metric.ball (f 0) (c / (4 : ℝ))) B)
|
apply eventually_nhds_iff.mp
|
||||||
|
apply continuousAt_def.1
|
||||||
|
apply Continuous.continuousAt
|
||||||
|
fun_prop
|
||||||
|
|
||||||
|
apply continuousAt_def.1
|
||||||
|
apply hf.continuousAt
|
||||||
|
exact Metric.ball_mem_nhds 0 hR
|
||||||
|
apply Metric.ball_mem_nhds (f 0)
|
||||||
|
simpa
|
||||||
|
|
||||||
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s := by
|
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s := by
|
||||||
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
|
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
|
||||||
|
@ -108,13 +117,12 @@ theorem primitive_fderivAtBasepointZero
|
||||||
exact Metric.isOpen_ball
|
exact Metric.isOpen_ball
|
||||||
constructor
|
constructor
|
||||||
· exact h₂s.2
|
· exact h₂s.2
|
||||||
· simp
|
· simpa
|
||||||
|
|
||||||
sorry
|
|
||||||
use (2 : ℝ)⁻¹ * ε'
|
use (2 : ℝ)⁻¹ * ε'
|
||||||
constructor
|
constructor
|
||||||
· simpa
|
· simpa
|
||||||
· intro x hx
|
· intro x hx
|
||||||
|
apply Set.inter_subset_left
|
||||||
apply h₂ε'
|
apply h₂ε'
|
||||||
simp
|
simp
|
||||||
calc Complex.abs x
|
calc Complex.abs x
|
||||||
|
|
Loading…
Reference in New Issue