working…
This commit is contained in:
parent
c44f7e2efd
commit
9294d89ef1
|
@ -335,7 +335,6 @@ theorem primitive_additivity
|
|||
(f : ℂ → E)
|
||||
(z₀ : ℂ)
|
||||
(rx ry : ℝ)
|
||||
(hrx : 0 < rx)
|
||||
(hry : 0 < ry)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||
(z₁ : ℂ)
|
||||
|
@ -347,50 +346,6 @@ theorem primitive_additivity
|
|||
use ry - dist z₀.im z₁.im
|
||||
intro z hz
|
||||
|
||||
/-
|
||||
have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by
|
||||
intro x hx
|
||||
|
||||
have A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by
|
||||
apply Real.dist_right_le_of_mem_uIcc
|
||||
rw [Set.uIcc_comm]
|
||||
exact (Complex.mem_reProdIm.1 hx).2
|
||||
|
||||
have A₂ : dist x.re z₁.re ≤ dist z.re z₁.re := by
|
||||
apply Real.dist_right_le_of_mem_uIcc
|
||||
rw [Set.uIcc_comm]
|
||||
exact (Complex.mem_reProdIm.1 hx).1
|
||||
|
||||
have A₃ : dist z.re z₁.re < R - dist z₁ z₀ := by
|
||||
have : ∀ x₀ x₁ : ℂ, dist x₀.re x₁.re ≤ dist x₀ x₁ := by
|
||||
intro x₀ x₁
|
||||
rw [Complex.dist_eq_re_im, Real.dist_eq]
|
||||
apply Real.le_sqrt_of_sq_le
|
||||
simp
|
||||
exact sq_nonneg (x₀.im - x₁.im)
|
||||
calc dist z.re z₁.re
|
||||
_ ≤ dist z z₁ := by apply this z z₁
|
||||
_ < R - dist z₁ z₀ := by exact hz
|
||||
|
||||
simp
|
||||
|
||||
have B₁ : dist ⟨z₁.re, x.im⟩ z₀ ≤ dist z₁ z₀ := by
|
||||
rw [Complex.dist_eq_re_im]
|
||||
rw [Complex.dist_eq_re_im]
|
||||
simp
|
||||
apply Real.sqrt_le_sqrt
|
||||
simp
|
||||
exact sq_le_sq.mpr A₁
|
||||
|
||||
calc dist x z₀
|
||||
_ ≤ dist x ⟨z₁.re, x.im⟩ + dist ⟨z₁.re, x.im⟩ z₀ := by apply dist_triangle
|
||||
_ = dist x.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by rw [Complex.dist_of_im_eq]; rfl
|
||||
_ ≤ dist z.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_le_add_right A₂
|
||||
_ < (R - dist z₁ z₀) + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_lt_add_right A₃
|
||||
_ ≤ (R - dist z₁ z₀) + dist z₁ z₀ := by exact (add_le_add_iff_left (R - dist z₁ z₀)).mpr B₁
|
||||
_ = R := by exact sub_add_cancel R (dist z₁ z₀)
|
||||
-/
|
||||
|
||||
unfold primitive
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||
|
@ -545,8 +500,26 @@ theorem primitive_additivity
|
|||
have H' : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by
|
||||
apply DifferentiableOn.mono hf
|
||||
intro x hx
|
||||
exact H hx
|
||||
|
||||
constructor
|
||||
· simp
|
||||
calc dist x.re z₀.re
|
||||
_ ≤ dist x.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle x.re z₁.re z₀.re
|
||||
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
|
||||
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
rw [Set.uIcc_comm] at hx
|
||||
apply Real.dist_right_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).1
|
||||
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
|
||||
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
|
||||
_ = rx := by
|
||||
rw [dist_comm]
|
||||
simp
|
||||
· simp
|
||||
calc dist x.im z₀.im
|
||||
_ ≤ dist z₀.im z₁.im := by rw [dist_comm]; exact Real.dist_left_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).2
|
||||
_ < ry := by
|
||||
rw [dist_comm]
|
||||
exact Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz₁).2
|
||||
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H'
|
||||
have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
|
||||
|
|
Loading…
Reference in New Issue