working…
This commit is contained in:
		| @@ -335,7 +335,6 @@ theorem primitive_additivity | |||||||
|   (f : ℂ  → E) |   (f : ℂ  → E) | ||||||
|   (z₀ : ℂ) |   (z₀ : ℂ) | ||||||
|   (rx ry : ℝ) |   (rx ry : ℝ) | ||||||
|   (hrx : 0 < rx) |  | ||||||
|   (hry : 0 < ry) |   (hry : 0 < ry) | ||||||
|   (hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)) |   (hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)) | ||||||
|   (z₁ : ℂ) |   (z₁ : ℂ) | ||||||
| @@ -347,50 +346,6 @@ theorem primitive_additivity | |||||||
|   use ry - dist z₀.im z₁.im |   use ry - dist z₀.im z₁.im | ||||||
|   intro z hz |   intro z hz | ||||||
|  |  | ||||||
| /- |  | ||||||
|   have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by |  | ||||||
|     intro x hx |  | ||||||
|  |  | ||||||
|     have A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by |  | ||||||
|       apply Real.dist_right_le_of_mem_uIcc |  | ||||||
|       rw [Set.uIcc_comm] |  | ||||||
|       exact (Complex.mem_reProdIm.1 hx).2 |  | ||||||
|  |  | ||||||
|     have A₂ : dist x.re z₁.re ≤ dist z.re z₁.re := by |  | ||||||
|       apply Real.dist_right_le_of_mem_uIcc |  | ||||||
|       rw [Set.uIcc_comm] |  | ||||||
|       exact (Complex.mem_reProdIm.1 hx).1 |  | ||||||
|  |  | ||||||
|     have A₃ : dist z.re z₁.re < R - dist z₁ z₀ := by |  | ||||||
|       have : ∀ x₀ x₁ : ℂ, dist x₀.re x₁.re ≤ dist x₀ x₁ := by |  | ||||||
|         intro x₀ x₁ |  | ||||||
|         rw [Complex.dist_eq_re_im, Real.dist_eq] |  | ||||||
|         apply Real.le_sqrt_of_sq_le |  | ||||||
|         simp |  | ||||||
|         exact sq_nonneg (x₀.im - x₁.im) |  | ||||||
|       calc dist z.re z₁.re |  | ||||||
|         _ ≤ dist z z₁ := by apply this z z₁ |  | ||||||
|         _ < R - dist z₁ z₀ := by exact hz |  | ||||||
|  |  | ||||||
|     simp |  | ||||||
|  |  | ||||||
|     have B₁ : dist ⟨z₁.re, x.im⟩ z₀ ≤ dist z₁ z₀ := by |  | ||||||
|       rw [Complex.dist_eq_re_im] |  | ||||||
|       rw [Complex.dist_eq_re_im] |  | ||||||
|       simp |  | ||||||
|       apply Real.sqrt_le_sqrt |  | ||||||
|       simp |  | ||||||
|       exact sq_le_sq.mpr A₁ |  | ||||||
|  |  | ||||||
|     calc dist x z₀ |  | ||||||
|       _ ≤ dist x ⟨z₁.re, x.im⟩ + dist ⟨z₁.re, x.im⟩ z₀ := by apply dist_triangle |  | ||||||
|       _ = dist x.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by rw [Complex.dist_of_im_eq]; rfl |  | ||||||
|       _ ≤ dist z.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_le_add_right A₂ |  | ||||||
|       _ < (R - dist z₁ z₀) + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_lt_add_right A₃ |  | ||||||
|       _ ≤ (R - dist z₁ z₀) + dist z₁ z₀ := by exact (add_le_add_iff_left (R - dist z₁ z₀)).mpr B₁ |  | ||||||
|       _ = R := by exact sub_add_cancel R (dist z₁ z₀) |  | ||||||
| -/ |  | ||||||
|  |  | ||||||
|   unfold primitive |   unfold primitive | ||||||
|  |  | ||||||
|   have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by |   have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by | ||||||
| @@ -545,8 +500,26 @@ theorem primitive_additivity | |||||||
|   have H' : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by |   have H' : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by | ||||||
|     apply DifferentiableOn.mono hf |     apply DifferentiableOn.mono hf | ||||||
|     intro x hx |     intro x hx | ||||||
|     exact H hx |     constructor | ||||||
|  |     · simp | ||||||
|  |       calc dist x.re z₀.re | ||||||
|  |       _ ≤ dist x.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle x.re z₁.re z₀.re | ||||||
|  |       _ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by | ||||||
|  |         apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr | ||||||
|  |         rw [Set.uIcc_comm] at hx | ||||||
|  |         apply Real.dist_right_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).1 | ||||||
|  |       _ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by | ||||||
|  |         apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr | ||||||
|  |         apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1 | ||||||
|  |       _ = rx := by | ||||||
|  |         rw [dist_comm] | ||||||
|  |         simp | ||||||
|  |     · simp | ||||||
|  |       calc dist x.im z₀.im | ||||||
|  |       _ ≤ dist z₀.im z₁.im := by rw [dist_comm]; exact Real.dist_left_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).2 | ||||||
|  |       _ < ry := by | ||||||
|  |         rw [dist_comm] | ||||||
|  |         exact Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz₁).2 | ||||||
|  |  | ||||||
|   let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H' |   let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H' | ||||||
|   have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by |   have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus