working…
This commit is contained in:
parent
ef7e1df191
commit
8e5ada9a01
|
@ -74,3 +74,14 @@ theorem AnalyticAt.order_eq_zero_iff
|
||||||
· constructor
|
· constructor
|
||||||
· exact hz
|
· exact hz
|
||||||
· simp
|
· simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticAt.supp_order_toNat
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(hf : AnalyticAt ℂ f z₀) :
|
||||||
|
hf.order.toNat ≠ 0 → f z₀ = 0 := by
|
||||||
|
|
||||||
|
contrapose
|
||||||
|
intro h₁f
|
||||||
|
simp [hf.order_eq_zero_iff.2 h₁f]
|
||||||
|
|
|
@ -107,16 +107,6 @@ theorem AnalyticOn.support_of_order₁
|
||||||
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOn.support_of_order₂
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{U : Set ℂ}
|
|
||||||
(h₁U : IsPreconnected U)
|
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
|
||||||
Function.support (ENat.toNat ∘ h₁f.order) = U.restrict f⁻¹' {0} := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOn.eliminateZeros
|
theorem AnalyticOn.eliminateZeros
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
@ -376,6 +366,7 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a : U, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a : U, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||||
|
|
||||||
|
|
||||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||||
|
|
||||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||||
|
@ -394,7 +385,6 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
||||||
intro z
|
intro z
|
||||||
rw [h₃g z]
|
rw [h₃g z]
|
||||||
|
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· exact h₁g
|
· exact h₁g
|
||||||
· constructor
|
· constructor
|
||||||
|
@ -411,14 +401,17 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
||||||
rw [inter z] at this
|
rw [inter z] at this
|
||||||
exact right_ne_zero_of_smul this
|
exact right_ne_zero_of_smul this
|
||||||
· intro z
|
· intro z
|
||||||
|
|
||||||
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
||||||
have hφ : Function.mulSupport φ ⊆ A := by
|
have hφ : Function.mulSupport φ ⊆ A := by
|
||||||
intro x hx
|
intro x hx
|
||||||
simp [φ] at hx
|
simp [φ] at hx
|
||||||
have : (h₁f.order x).toNat ≠ 0 := by
|
have : (h₁f.order x).toNat ≠ 0 := by
|
||||||
sorry
|
by_contra C
|
||||||
|
rw [C] at hx
|
||||||
sorry
|
simp at hx
|
||||||
|
simp [A]
|
||||||
|
exact AnalyticAt.supp_order_toNat (h₁f x x.2) this
|
||||||
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
||||||
rw [inter z]
|
rw [inter z]
|
||||||
rfl
|
rfl
|
||||||
|
|
Loading…
Reference in New Issue