working…
This commit is contained in:
parent
1d27eeb66b
commit
8d100b2333
|
@ -1,4 +1,3 @@
|
||||||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
|
||||||
import Nevanlinna.complexHarmonic
|
import Nevanlinna.complexHarmonic
|
||||||
import Nevanlinna.holomorphicAt
|
import Nevanlinna.holomorphicAt
|
||||||
import Nevanlinna.holomorphic_primitive
|
import Nevanlinna.holomorphic_primitive
|
||||||
|
@ -194,33 +193,53 @@ theorem harmonic_is_realOfHolomorphic
|
||||||
apply Differentiable.const_smul
|
apply Differentiable.const_smul
|
||||||
exact reg₁f_I.differentiable le_rfl
|
exact reg₁f_I.differentiable le_rfl
|
||||||
|
|
||||||
let F := primitive 0 g
|
let F := fun z ↦ (primitive 0 g) z + f 0
|
||||||
|
have regF : Differentiable ℂ F := by
|
||||||
|
apply Differentiable.add
|
||||||
|
intro x
|
||||||
|
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
|
||||||
|
exact A.differentiableAt
|
||||||
|
simp
|
||||||
|
|
||||||
have pF : ∀ x a, (fderiv ℝ F x) a = (g x) * a := by
|
have pF' : ∀ x, (fderiv ℂ F x) = ContinuousLinearMap.lsmul ℂ ℂ (g x) := by
|
||||||
sorry
|
intro x
|
||||||
|
dsimp [F]
|
||||||
|
rw [fderiv_add_const]
|
||||||
|
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
|
||||||
|
let B : HasFDerivAt (primitive 0 g) (ContinuousLinearMap.lsmul ℂ ℂ (g x)) x := by
|
||||||
|
rw [hasFDerivAt_iff_hasDerivAt]
|
||||||
|
simp
|
||||||
|
exact A
|
||||||
|
exact HasFDerivAt.fderiv B
|
||||||
|
|
||||||
have regF : Differentiable ℂ F := by sorry
|
have pF'' : ∀ x, (fderiv ℝ F x) = ContinuousLinearMap.lsmul ℝ ℂ (g x) := by
|
||||||
|
intro x
|
||||||
|
rw [DifferentiableAt.fderiv_restrictScalars ℝ (regF x), pF' x]
|
||||||
|
exact rfl
|
||||||
|
|
||||||
use F
|
use F
|
||||||
intro z
|
intro z
|
||||||
constructor
|
constructor
|
||||||
· -- HolomorphicAt F z
|
· -- HolomorphicAt F z
|
||||||
apply HolomorphicAt_iff.2
|
apply HolomorphicAt_iff.2
|
||||||
use {z : ℂ | true}
|
use Set.univ
|
||||||
constructor
|
constructor
|
||||||
· exact isOpen_const
|
· exact isOpen_const
|
||||||
· constructor
|
· constructor
|
||||||
· simp
|
· simp
|
||||||
· intro w hw
|
· intro w _
|
||||||
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
|
exact regF w
|
||||||
apply A.differentiableAt
|
|
||||||
· -- (F z).re = f z
|
· -- (F z).re = f z
|
||||||
have A := reg₂f.differentiable one_le_two
|
have A := reg₂f.differentiable one_le_two
|
||||||
have B : Differentiable ℝ (Complex.reCLM ∘ F) := by
|
have B : Differentiable ℝ (Complex.reCLM ∘ F) := by
|
||||||
apply Differentiable.comp
|
apply Differentiable.comp
|
||||||
exact ContinuousLinearMap.differentiable Complex.reCLM
|
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||||
exact Differentiable.restrictScalars ℝ regF
|
exact Differentiable.restrictScalars ℝ regF
|
||||||
have C : (F 0).re = f 0 := by sorry
|
have C : (F 0).re = f 0 := by
|
||||||
|
dsimp [F]
|
||||||
|
rw [primitive_zeroAtBasepoint]
|
||||||
|
simp
|
||||||
|
|
||||||
apply eq_of_fderiv_eq B A _ 0 C
|
apply eq_of_fderiv_eq B A _ 0 C
|
||||||
intro x
|
intro x
|
||||||
rw [fderiv.comp]
|
rw [fderiv.comp]
|
||||||
|
@ -228,7 +247,7 @@ theorem harmonic_is_realOfHolomorphic
|
||||||
apply ContinuousLinearMap.ext
|
apply ContinuousLinearMap.ext
|
||||||
intro w
|
intro w
|
||||||
simp
|
simp
|
||||||
rw [pF]
|
rw [pF'']
|
||||||
dsimp [g, f_1, f_I, partialDeriv]
|
dsimp [g, f_1, f_I, partialDeriv]
|
||||||
simp
|
simp
|
||||||
have : w = w.re • 1 + w.im • Complex.I := by simp
|
have : w = w.re • 1 + w.im • Complex.I := by simp
|
||||||
|
|
Loading…
Reference in New Issue