Working…

This commit is contained in:
Stefan Kebekus 2024-11-28 16:52:56 +01:00
parent 8525ae1ece
commit 8bc84748a3
2 changed files with 62 additions and 16 deletions

View File

@ -105,14 +105,15 @@ theorem MeromorphicOn.clopen_of_order_eq_top
· exact open_of_order_eq_top h₁f · exact open_of_order_eq_top h₁f
theorem MeromorphicOn.order_ne_top theorem MeromorphicOn.order_ne_top'
{f : }
{U : Set } {U : Set }
(hU : IsConnected U) (hU : IsConnected U)
(h₁f : StronglyMeromorphicOn f U) (h₁f : MeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) : (h₂f : ∃ u : U, (h₁f u u.2).order ≠ ) :
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by ∀ u : U, (h₁f u u.2).order ≠ := by
let A := h₁f.meromorphicOn.clopen_of_order_eq_top let A := h₁f.clopen_of_order_eq_top
have : PreconnectedSpace U := by have : PreconnectedSpace U := by
apply isPreconnected_iff_preconnectedSpace.mp apply isPreconnected_iff_preconnectedSpace.mp
exact IsConnected.isPreconnected hU exact IsConnected.isPreconnected hU
@ -123,9 +124,24 @@ theorem MeromorphicOn.order_ne_top
rw [← h] at this rw [← h] at this
simp at this simp at this
tauto tauto
· obtain ⟨u, hu⟩ := h₂f · obtain ⟨u, hU⟩ := h₂f
have : u ∈ (Set.univ : Set U) := by trivial have A : u ∈ Set.univ := by trivial
rw [← h] at this rw [← h] at A
simp at this simp at A
rw [(h₁f u u.2).order_eq_zero_iff.2 hu] at this
tauto tauto
theorem MeromorphicOn.order_ne_top
{f : }
{U : Set }
(hU : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by
apply MeromorphicOn.order_ne_top' hU h₁f.meromorphicOn
obtain ⟨u, hu⟩ := h₂f
use u
rw [← (h₁f u u.2).order_eq_zero_iff] at hu
rw [hu]
simp

View File

@ -1,4 +1,5 @@
import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.meromorphicOn
import Nevanlinna.meromorphicOn_divisor import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.mathlibAddOn import Nevanlinna.mathlibAddOn
@ -61,12 +62,6 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
apply AnalyticOn.stronglyMeromorphicOn apply AnalyticOn.stronglyMeromorphicOn
apply analyticOnNhd_const apply analyticOnNhd_const
theorem stronglyMeromorphicOn_ratlPolynomial₃U
(d : )
(U : Set ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
intro z hz
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
@ -140,6 +135,40 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
simp simp
theorem stronglyMeromorphicOn_ratlPolynomial₃order
{z : }
(d : ) :
((stronglyMeromorphicOn_ratlPolynomial₃ d) z trivial).meromorphicAt.order ≠ := by
have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by
ext u
constructor
· intro h
simp at h
simp
by_contra hCon
rw [hCon] at h
simp at h
tauto
· intro h
simp
by_contra hCon
let A := congrFun hCon u
simp at A
have t₁ : (0 : ) ^ d u ≠ 0 := ne_zero_of_eq_one A
rw [zpow_ne_zero_iff h] at t₁
tauto
by_cases hd : Set.Finite (Function.support d)
· rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d hd]
simp
· rw [← h₂d] at hd
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
exact hd
simp_rw [finprod_of_infinite_mulSupport this]
sorry
theorem stronglyMeromorphicOn_divisor_ratlPolynomial theorem stronglyMeromorphicOn_divisor_ratlPolynomial
(d : ) (d : )
(h₁d : Set.Finite d.support) : (h₁d : Set.Finite d.support) :
@ -150,6 +179,7 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d] rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
simp simp
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
{U : Set } {U : Set }
(d : ) (d : )