Working…
This commit is contained in:
parent
8525ae1ece
commit
8bc84748a3
|
@ -105,14 +105,15 @@ theorem MeromorphicOn.clopen_of_order_eq_top
|
||||||
· exact open_of_order_eq_top h₁f
|
· exact open_of_order_eq_top h₁f
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.order_ne_top
|
theorem MeromorphicOn.order_ne_top'
|
||||||
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hU : IsConnected U)
|
(hU : IsConnected U)
|
||||||
(h₁f : StronglyMeromorphicOn f U)
|
(h₁f : MeromorphicOn f U)
|
||||||
(h₂f : ∃ u : U, f u ≠ 0) :
|
(h₂f : ∃ u : U, (h₁f u u.2).order ≠ ⊤) :
|
||||||
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
∀ u : U, (h₁f u u.2).order ≠ ⊤ := by
|
||||||
|
|
||||||
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
|
let A := h₁f.clopen_of_order_eq_top
|
||||||
have : PreconnectedSpace U := by
|
have : PreconnectedSpace U := by
|
||||||
apply isPreconnected_iff_preconnectedSpace.mp
|
apply isPreconnected_iff_preconnectedSpace.mp
|
||||||
exact IsConnected.isPreconnected hU
|
exact IsConnected.isPreconnected hU
|
||||||
|
@ -123,9 +124,24 @@ theorem MeromorphicOn.order_ne_top
|
||||||
rw [← h] at this
|
rw [← h] at this
|
||||||
simp at this
|
simp at this
|
||||||
tauto
|
tauto
|
||||||
· obtain ⟨u, hu⟩ := h₂f
|
· obtain ⟨u, hU⟩ := h₂f
|
||||||
have : u ∈ (Set.univ : Set U) := by trivial
|
have A : u ∈ Set.univ := by trivial
|
||||||
rw [← h] at this
|
rw [← h] at A
|
||||||
simp at this
|
simp at A
|
||||||
rw [(h₁f u u.2).order_eq_zero_iff.2 hu] at this
|
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.order_ne_top
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsConnected U)
|
||||||
|
(h₁f : StronglyMeromorphicOn f U)
|
||||||
|
(h₂f : ∃ u : U, f u ≠ 0) :
|
||||||
|
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||||
|
|
||||||
|
apply MeromorphicOn.order_ne_top' hU h₁f.meromorphicOn
|
||||||
|
obtain ⟨u, hu⟩ := h₂f
|
||||||
|
use u
|
||||||
|
rw [← (h₁f u u.2).order_eq_zero_iff] at hu
|
||||||
|
rw [hu]
|
||||||
|
simp
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
|
import Nevanlinna.meromorphicOn
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
import Nevanlinna.meromorphicOn_divisor
|
||||||
import Nevanlinna.mathlibAddOn
|
import Nevanlinna.mathlibAddOn
|
||||||
|
|
||||||
|
@ -61,12 +62,6 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
||||||
apply AnalyticOn.stronglyMeromorphicOn
|
apply AnalyticOn.stronglyMeromorphicOn
|
||||||
apply analyticOnNhd_const
|
apply analyticOnNhd_const
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
|
||||||
(d : ℂ → ℤ)
|
|
||||||
(U : Set ℂ) :
|
|
||||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
|
||||||
intro z hz
|
|
||||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||||
|
@ -140,6 +135,40 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem stronglyMeromorphicOn_ratlPolynomial₃order
|
||||||
|
{z : ℂ}
|
||||||
|
(d : ℂ → ℤ) :
|
||||||
|
((stronglyMeromorphicOn_ratlPolynomial₃ d) z trivial).meromorphicAt.order ≠ ⊤ := by
|
||||||
|
|
||||||
|
have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by
|
||||||
|
ext u
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
simp at h
|
||||||
|
simp
|
||||||
|
by_contra hCon
|
||||||
|
rw [hCon] at h
|
||||||
|
simp at h
|
||||||
|
tauto
|
||||||
|
· intro h
|
||||||
|
simp
|
||||||
|
by_contra hCon
|
||||||
|
let A := congrFun hCon u
|
||||||
|
simp at A
|
||||||
|
have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A
|
||||||
|
rw [zpow_ne_zero_iff h] at t₁
|
||||||
|
tauto
|
||||||
|
|
||||||
|
by_cases hd : Set.Finite (Function.support d)
|
||||||
|
· rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d hd]
|
||||||
|
simp
|
||||||
|
· rw [← h₂d] at hd
|
||||||
|
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
||||||
|
exact hd
|
||||||
|
simp_rw [finprod_of_infinite_mulSupport this]
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||||
(d : ℂ → ℤ)
|
(d : ℂ → ℤ)
|
||||||
(h₁d : Set.Finite d.support) :
|
(h₁d : Set.Finite d.support) :
|
||||||
|
@ -150,6 +179,7 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(d : ℂ → ℤ)
|
(d : ℂ → ℤ)
|
||||||
|
|
Loading…
Reference in New Issue