Update analyticOn_zeroSet.lean
This commit is contained in:
parent
efe088f9b5
commit
867b88bf5a
@ -346,7 +346,6 @@ theorem finiteZeros
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
@ -354,95 +353,41 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ U, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||
|
||||
let ι : U → ℂ := Subtype.val
|
||||
|
||||
let A := U ∩ f ⁻¹' {0}
|
||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||
|
||||
by sorry -- (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
let B := AnalyticOn.eliminateZeros h₁f
|
||||
have t₁ : (U ∩ f⁻¹' {0}).Finite := by
|
||||
sorry
|
||||
|
||||
have : A₁.Finite := by
|
||||
apply Set.Finite.preimage
|
||||
exact Set.injOn_subtype_val
|
||||
exact t₁
|
||||
let A := this.toFinset
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
by_cases hz : z ∈ U
|
||||
· exact (h₁f z hz).order.toNat
|
||||
· exact 0
|
||||
|
||||
-- case empty
|
||||
simp
|
||||
use f
|
||||
simp
|
||||
exact hf
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
sorry
|
||||
|
||||
-- case insert
|
||||
intro b₀ B hb iHyp
|
||||
intro hBinsert
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
rw [h₃g₀ z]
|
||||
rfl
|
||||
simp_rw [this]
|
||||
|
||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||
dsimp [φ]
|
||||
apply Finset.analyticAt_prod
|
||||
intro b _
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id ℂ
|
||||
exact analyticAt_const
|
||||
|
||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||
use φ
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· dsimp [φ]
|
||||
push_neg
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro a ha
|
||||
simp
|
||||
have : ¬ (b₀.1 - a.1 = 0) := by
|
||||
by_contra C
|
||||
rw [sub_eq_zero] at C
|
||||
rw [SetCoe.ext C] at hb
|
||||
tauto
|
||||
tauto
|
||||
· simp
|
||||
|
||||
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||
|
||||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
use A
|
||||
constructor
|
||||
· exact h₁g₁
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro a h₁a
|
||||
by_cases h₂a : a = b₀
|
||||
· rwa [h₂a]
|
||||
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
||||
let B' := h₃g₁ a
|
||||
let C' := h₂g₀ a A'
|
||||
rw [B'] at C'
|
||||
exact right_ne_zero_of_smul C'
|
||||
· sorry
|
||||
· intro z
|
||||
let A' := h₃g₀ z
|
||||
rw [h₃g₁ z] at A'
|
||||
rw [A']
|
||||
rw [← smul_assoc]
|
||||
rw [h₃g z]
|
||||
congr
|
||||
simp
|
||||
rw [Finset.prod_insert]
|
||||
ring
|
||||
exact hb
|
||||
funext a
|
||||
congr
|
||||
dsimp [n]
|
||||
simp [a.2]
|
||||
|
Loading…
Reference in New Issue
Block a user