working…
This commit is contained in:
parent
e8fa4b646d
commit
efe088f9b5
@ -233,3 +233,216 @@ theorem AnalyticOn.eliminateZeros
|
||||
rw [Finset.prod_insert]
|
||||
ring
|
||||
exact hb
|
||||
|
||||
|
||||
theorem XX
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
|
||||
|
||||
intro hu
|
||||
apply ENat.coe_toNat
|
||||
by_contra C
|
||||
rw [(h₁f u hu).order_eq_top_iff] at C
|
||||
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
|
||||
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
|
||||
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
|
||||
tauto
|
||||
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
||||
intro z
|
||||
|
||||
let A := XX hU h₁f h₂f z.2.1
|
||||
rw [eq_comm] at A
|
||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||
|
||||
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
||||
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
|
||||
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
|
||||
have : {0}ᶜ ∈ nhds (g z) := by
|
||||
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||
|
||||
let F := h₄g.preimage_mem_nhds this
|
||||
rw [Metric.mem_nhds_iff] at F
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
||||
use ε
|
||||
constructor; exact h₁ε
|
||||
intro y hy
|
||||
let G := h₂ε hy
|
||||
simp at G
|
||||
exact G
|
||||
obtain ⟨ε₁, h₁ε₁⟩ := this
|
||||
|
||||
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
||||
use min ε₁ ε₂
|
||||
constructor
|
||||
· have : 0 < min ε₁ ε₂ := by
|
||||
rw [lt_min_iff]
|
||||
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
||||
exact this
|
||||
|
||||
intro y
|
||||
intro h₁y
|
||||
|
||||
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
||||
|
||||
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
|
||||
have F := h₂ε₂ y.1 h₂y
|
||||
rw [y.2.2] at F
|
||||
simp at F
|
||||
|
||||
have : g y.1 ≠ 0 := by
|
||||
exact h₁ε₁.2 y h₃y
|
||||
simp [this] at F
|
||||
ext
|
||||
rw [sub_eq_zero] at F
|
||||
tauto
|
||||
|
||||
|
||||
theorem finiteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
||||
apply IsCompact.of_isClosed_subset h₂U
|
||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||
exact IsCompact.isClosed h₂U
|
||||
exact isClosed_singleton
|
||||
exact Set.inter_subset_left
|
||||
|
||||
apply hinter.finite
|
||||
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
|
||||
exact discreteZeros h₁U h₁f h₂f
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ U, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
|
||||
let A := U ∩ f ⁻¹' {0}
|
||||
|
||||
by sorry -- (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
let B := AnalyticOn.eliminateZeros h₁f
|
||||
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
-- case empty
|
||||
simp
|
||||
use f
|
||||
simp
|
||||
exact hf
|
||||
|
||||
-- case insert
|
||||
intro b₀ B hb iHyp
|
||||
intro hBinsert
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
rw [h₃g₀ z]
|
||||
rfl
|
||||
simp_rw [this]
|
||||
|
||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||
dsimp [φ]
|
||||
apply Finset.analyticAt_prod
|
||||
intro b _
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id ℂ
|
||||
exact analyticAt_const
|
||||
|
||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||
use φ
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· dsimp [φ]
|
||||
push_neg
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro a ha
|
||||
simp
|
||||
have : ¬ (b₀.1 - a.1 = 0) := by
|
||||
by_contra C
|
||||
rw [sub_eq_zero] at C
|
||||
rw [SetCoe.ext C] at hb
|
||||
tauto
|
||||
tauto
|
||||
· simp
|
||||
|
||||
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||
|
||||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
· exact h₁g₁
|
||||
· constructor
|
||||
· intro a h₁a
|
||||
by_cases h₂a : a = b₀
|
||||
· rwa [h₂a]
|
||||
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
||||
let B' := h₃g₁ a
|
||||
let C' := h₂g₀ a A'
|
||||
rw [B'] at C'
|
||||
exact right_ne_zero_of_smul C'
|
||||
· intro z
|
||||
let A' := h₃g₀ z
|
||||
rw [h₃g₁ z] at A'
|
||||
rw [A']
|
||||
rw [← smul_assoc]
|
||||
congr
|
||||
simp
|
||||
rw [Finset.prod_insert]
|
||||
ring
|
||||
exact hb
|
||||
|
@ -282,186 +282,6 @@ theorem zeroDivisor_finiteOnCompact
|
||||
exact Set.inter_subset_right
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(n : ℕ) :
|
||||
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
||||
|
||||
-- Describe g near z₀
|
||||
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
||||
rw [eventually_nhds_iff]
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
||||
use t
|
||||
constructor
|
||||
· intro y h₁y
|
||||
by_cases h₂y : y = z₀
|
||||
· dsimp [g]; simp [h₂y]
|
||||
· dsimp [g]; simp [h₂y]
|
||||
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
||||
exact h₁t y h₁y
|
||||
norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· assumption
|
||||
· assumption
|
||||
|
||||
-- Describe g near points z₁ that are different from z₀
|
||||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
simp [g, hy]
|
||||
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
||||
|
||||
-- Use g and show that it has all required properties
|
||||
use g
|
||||
constructor
|
||||
· -- AnalyticOn ℂ g U
|
||||
intro z h₁z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z]
|
||||
apply AnalyticAt.congr h₁gloc
|
||||
exact Filter.EventuallyEq.symm g_near_z₀
|
||||
· simp_rw [eq_comm] at g_near_z₁
|
||||
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
||||
apply AnalyticAt.div
|
||||
exact hf z h₁z
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
apply analyticAt_const
|
||||
simp
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· simp [g]; tauto
|
||||
· intro z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z, g_near_z₀.self_of_nhds]
|
||||
exact h₃gloc.self_of_nhds
|
||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
||||
simp [h₂z]
|
||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
|
||||
simp; norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
|
||||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff'
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{A : Finset U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(n : A → ℕ) :
|
||||
∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a, g a ≠ 0) ∧ ∀ z, f z = (∏ a, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction
|
||||
|
||||
let a : A := by sorry
|
||||
let b : ℂ := by sorry
|
||||
let u : U := by sorry
|
||||
|
||||
let X := n a
|
||||
have : a = (3 : ℂ) := by sorry
|
||||
have : b ∈ ↑A := by sorry
|
||||
have : ↑a ∈ U := by exact Subtype.coe_prop a.val
|
||||
|
||||
let Y := ∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a
|
||||
|
||||
--∀ a : A, (hf (ha a)).order = ↑(n a) →
|
||||
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
|
||||
-- Define a candidate function
|
||||
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
||||
|
||||
-- Describe g near z₀
|
||||
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
||||
rw [eventually_nhds_iff]
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
||||
use t
|
||||
constructor
|
||||
· intro y h₁y
|
||||
by_cases h₂y : y = z₀
|
||||
· dsimp [g]; simp [h₂y]
|
||||
· dsimp [g]; simp [h₂y]
|
||||
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
||||
exact h₁t y h₁y
|
||||
norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· assumption
|
||||
· assumption
|
||||
|
||||
-- Describe g near points z₁ different from z₀
|
||||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
simp [g, hy]
|
||||
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
||||
|
||||
-- Use g and show that it has all required properties
|
||||
use g
|
||||
constructor
|
||||
· -- AnalyticOn ℂ g U
|
||||
intro z h₁z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z]
|
||||
apply AnalyticAt.congr h₁gloc
|
||||
exact Filter.EventuallyEq.symm g_near_z₀
|
||||
· simp_rw [eq_comm] at g_near_z₁
|
||||
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
||||
apply AnalyticAt.div
|
||||
exact hf z h₁z
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
apply analyticAt_const
|
||||
simp
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· simp [g]; tauto
|
||||
· intro z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z, g_near_z₀.self_of_nhds]
|
||||
exact h₃gloc.self_of_nhds
|
||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
||||
simp [h₂z]
|
||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
|
||||
simp; norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
|
||||
|
||||
noncomputable def zeroDivisorDegree
|
||||
|
Loading…
Reference in New Issue
Block a user