Working…
This commit is contained in:
parent
9be57a898c
commit
8525ae1ece
@ -376,8 +376,14 @@ theorem MeromorphicOn.decompose₃'
|
|||||||
intro z hz
|
intro z hz
|
||||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||||||
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
|
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
|
||||||
sorry
|
apply stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||||
|
rwa [h₁d]
|
||||||
|
--
|
||||||
|
rw [h₁d]
|
||||||
|
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||||
|
intro z hz
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
let g' := f * h₁
|
let g' := f * h₁
|
||||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||||
|
@ -61,6 +61,13 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
|||||||
apply AnalyticOn.stronglyMeromorphicOn
|
apply AnalyticOn.stronglyMeromorphicOn
|
||||||
apply analyticOnNhd_const
|
apply analyticOnNhd_const
|
||||||
|
|
||||||
|
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
||||||
|
(d : ℂ → ℤ)
|
||||||
|
(U : Set ℂ) :
|
||||||
|
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||||||
|
intro z hz
|
||||||
|
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||||
{z : ℂ}
|
{z : ℂ}
|
||||||
@ -142,3 +149,21 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
|||||||
simp
|
simp
|
||||||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||||
|
{U : Set ℂ}
|
||||||
|
(d : ℂ → ℤ)
|
||||||
|
(h₁d : Set.Finite d.support)
|
||||||
|
(h₂d : d.support ⊆ U) :
|
||||||
|
(stronglyMeromorphicOn_ratlPolynomial₃U d U).meromorphicOn.divisor = d := by
|
||||||
|
|
||||||
|
funext z
|
||||||
|
rw [MeromorphicOn.divisor]
|
||||||
|
simp
|
||||||
|
by_cases hz : z ∈ U
|
||||||
|
· simp [hz]
|
||||||
|
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||||
|
simp
|
||||||
|
· simp [hz]
|
||||||
|
rw [eq_comm, ← Function.nmem_support]
|
||||||
|
tauto
|
||||||
|
Loading…
Reference in New Issue
Block a user