Working
This commit is contained in:
parent
1d1ae779cc
commit
84abab6b78
@ -12,39 +12,58 @@ open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
|
||||
lemma a
|
||||
(S : Set ℂ)
|
||||
(hS : S ∈ Filter.codiscreteWithin ⊤) :
|
||||
DiscreteTopology (Sᶜ : Set ℂ) := by
|
||||
lemma b
|
||||
(S U : Set ℂ)
|
||||
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||
DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
||||
|
||||
rw [mem_codiscreteWithin] at hS
|
||||
simp at hS
|
||||
have : (Set.univ \ S)ᶜ = S := by ext z; simp
|
||||
rw [this] at hS
|
||||
have : (U \ S)ᶜ = S ∪ Uᶜ := by
|
||||
ext z
|
||||
simp
|
||||
tauto
|
||||
|
||||
rw [discreteTopology_subtype_iff]
|
||||
intro x hx
|
||||
rw [← mem_iff_inf_principal_compl]
|
||||
exact (hS x)
|
||||
|
||||
simp at hx
|
||||
let A := hS x hx.2
|
||||
rw [← this]
|
||||
assumption
|
||||
|
||||
|
||||
lemma c
|
||||
(S U : Set ℂ)
|
||||
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||
Countable ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
||||
let A := b S U hS
|
||||
apply TopologicalSpace.separableSpace_iff_countable.1
|
||||
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
||||
|
||||
|
||||
theorem integrability_congr_changeDiscrete
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{r : ℝ}
|
||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||
intro hf₁
|
||||
|
||||
apply IntervalIntegrable.congr hf₁
|
||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
||||
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U)
|
||||
constructor
|
||||
· apply Set.Countable.measure_zero
|
||||
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
||||
have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by
|
||||
exact rfl
|
||||
rw [this]
|
||||
apply Set.Countable.preimage_circleMap
|
||||
|
||||
apply c
|
||||
sorry
|
||||
sorry
|
||||
· sorry
|
||||
· intro x hx
|
||||
simp at hx
|
||||
simp
|
||||
exact hx.1
|
||||
|
Loading…
Reference in New Issue
Block a user