diff --git a/Nevanlinna/meromorphicOn_integrability.lean b/Nevanlinna/meromorphicOn_integrability.lean index df535b3..8d092d3 100644 --- a/Nevanlinna/meromorphicOn_integrability.lean +++ b/Nevanlinna/meromorphicOn_integrability.lean @@ -12,39 +12,58 @@ open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral -lemma a - (S : Set ℂ) - (hS : S ∈ Filter.codiscreteWithin ⊤) : - DiscreteTopology (Sᶜ : Set ℂ) := by +lemma b + (S U : Set ℂ) + (hS : S ∈ Filter.codiscreteWithin U) : + DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by rw [mem_codiscreteWithin] at hS simp at hS - have : (Set.univ \ S)ᶜ = S := by ext z; simp - rw [this] at hS + have : (U \ S)ᶜ = S ∪ Uᶜ := by + ext z + simp + tauto rw [discreteTopology_subtype_iff] intro x hx rw [← mem_iff_inf_principal_compl] - exact (hS x) + + simp at hx + let A := hS x hx.2 + rw [← this] + assumption + + +lemma c + (S U : Set ℂ) + (hS : S ∈ Filter.codiscreteWithin U) : + Countable ((S ∪ Uᶜ)ᶜ : Set ℂ) := by + let A := b S U hS + apply TopologicalSpace.separableSpace_iff_countable.1 + exact TopologicalSpace.SecondCountableTopology.to_separableSpace theorem integrability_congr_changeDiscrete {f₁ f₂ : ℂ → ℂ} + {U : Set ℂ} {r : ℝ} - (hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) : + (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) : IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by intro hf₁ apply IntervalIntegrable.congr hf₁ rw [Filter.eventuallyEq_iff_exists_mem] - use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z} + use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U) constructor · apply Set.Countable.measure_zero - have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by + have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by exact rfl rw [this] apply Set.Countable.preimage_circleMap - + apply c sorry sorry - · sorry + · intro x hx + simp at hx + simp + exact hx.1