Working
This commit is contained in:
parent
1d1ae779cc
commit
84abab6b78
@ -12,39 +12,58 @@ open scoped Interval Topology
|
|||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
|
||||||
lemma a
|
lemma b
|
||||||
(S : Set ℂ)
|
(S U : Set ℂ)
|
||||||
(hS : S ∈ Filter.codiscreteWithin ⊤) :
|
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||||
DiscreteTopology (Sᶜ : Set ℂ) := by
|
DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
||||||
|
|
||||||
rw [mem_codiscreteWithin] at hS
|
rw [mem_codiscreteWithin] at hS
|
||||||
simp at hS
|
simp at hS
|
||||||
have : (Set.univ \ S)ᶜ = S := by ext z; simp
|
have : (U \ S)ᶜ = S ∪ Uᶜ := by
|
||||||
rw [this] at hS
|
ext z
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
|
||||||
rw [discreteTopology_subtype_iff]
|
rw [discreteTopology_subtype_iff]
|
||||||
intro x hx
|
intro x hx
|
||||||
rw [← mem_iff_inf_principal_compl]
|
rw [← mem_iff_inf_principal_compl]
|
||||||
exact (hS x)
|
|
||||||
|
simp at hx
|
||||||
|
let A := hS x hx.2
|
||||||
|
rw [← this]
|
||||||
|
assumption
|
||||||
|
|
||||||
|
|
||||||
|
lemma c
|
||||||
|
(S U : Set ℂ)
|
||||||
|
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||||
|
Countable ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
||||||
|
let A := b S U hS
|
||||||
|
apply TopologicalSpace.separableSpace_iff_countable.1
|
||||||
|
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
||||||
|
|
||||||
|
|
||||||
theorem integrability_congr_changeDiscrete
|
theorem integrability_congr_changeDiscrete
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||||
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||||
intro hf₁
|
intro hf₁
|
||||||
|
|
||||||
apply IntervalIntegrable.congr hf₁
|
apply IntervalIntegrable.congr hf₁
|
||||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U)
|
||||||
constructor
|
constructor
|
||||||
· apply Set.Countable.measure_zero
|
· apply Set.Countable.measure_zero
|
||||||
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by
|
||||||
exact rfl
|
exact rfl
|
||||||
rw [this]
|
rw [this]
|
||||||
apply Set.Countable.preimage_circleMap
|
apply Set.Countable.preimage_circleMap
|
||||||
|
apply c
|
||||||
sorry
|
sorry
|
||||||
sorry
|
sorry
|
||||||
· sorry
|
· intro x hx
|
||||||
|
simp at hx
|
||||||
|
simp
|
||||||
|
exact hx.1
|
||||||
|
Loading…
Reference in New Issue
Block a user