This commit is contained in:
Stefan Kebekus 2024-12-13 07:58:40 +01:00
parent 1d1ae779cc
commit 84abab6b78

View File

@ -12,39 +12,58 @@ open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
lemma a lemma b
(S : Set ) (S U : Set )
(hS : S ∈ Filter.codiscreteWithin ) : (hS : S ∈ Filter.codiscreteWithin U) :
DiscreteTopology (Sᶜ : Set ) := by DiscreteTopology ((S Uᶜ)ᶜ : Set ) := by
rw [mem_codiscreteWithin] at hS rw [mem_codiscreteWithin] at hS
simp at hS simp at hS
have : (Set.univ \ S)ᶜ = S := by ext z; simp have : (U \ S)ᶜ = S Uᶜ := by
rw [this] at hS ext z
simp
tauto
rw [discreteTopology_subtype_iff] rw [discreteTopology_subtype_iff]
intro x hx intro x hx
rw [← mem_iff_inf_principal_compl] rw [← mem_iff_inf_principal_compl]
exact (hS x)
simp at hx
let A := hS x hx.2
rw [← this]
assumption
lemma c
(S U : Set )
(hS : S ∈ Filter.codiscreteWithin U) :
Countable ((S Uᶜ)ᶜ : Set ) := by
let A := b S U hS
apply TopologicalSpace.separableSpace_iff_countable.1
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
theorem integrability_congr_changeDiscrete theorem integrability_congr_changeDiscrete
{f₁ f₂ : } {f₁ f₂ : }
{U : Set }
{r : } {r : }
(hf : f₁ =ᶠ[Filter.codiscreteWithin ] f₂) : (hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁ intro hf₁
apply IntervalIntegrable.congr hf₁ apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem] rw [Filter.eventuallyEq_iff_exists_mem]
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z} use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U)
constructor constructor
· apply Set.Countable.measure_zero · apply Set.Countable.measure_zero
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by
exact rfl exact rfl
rw [this] rw [this]
apply Set.Countable.preimage_circleMap apply Set.Countable.preimage_circleMap
apply c
sorry sorry
sorry sorry
· sorry · intro x hx
simp at hx
simp
exact hx.1