Update complexHarmonic.lean
This commit is contained in:
		| @@ -89,7 +89,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} | ||||
|     exact ContDiff.restrict_scalars ℝ h.1 | ||||
|  | ||||
|  | ||||
| theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) : | ||||
| theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) : | ||||
|   HarmonicOn (l ∘ f) s := by | ||||
|  | ||||
|   constructor | ||||
| @@ -97,15 +97,14 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : | ||||
|     apply ContDiffOn.continuousLinearMap_comp | ||||
|     exact h.1 | ||||
|   · -- Vanishing of Laplace | ||||
|  | ||||
|     rw [laplace_compContLin] | ||||
|     simp | ||||
|     intro z zHyp | ||||
|     rw [laplace_compContLinAt] | ||||
|     simp | ||||
|     rw [h.2 z] | ||||
|     simp | ||||
|     assumption | ||||
|  | ||||
|  | ||||
|     apply ContDiffOn.contDiffAt h.1 | ||||
|     exact IsOpen.mem_nhds hs zHyp | ||||
|  | ||||
|  | ||||
| theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} : | ||||
| @@ -200,15 +199,16 @@ theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) | ||||
| theorem log_normSq_of_holomorphicOn_is_harmonicOn | ||||
|   {f : ℂ → ℂ} | ||||
|   {s : Set ℂ} | ||||
|   (hs : IsOpen s) | ||||
|   (h₁ : DifferentiableOn ℂ f s) | ||||
|   (h₂ : ∀ z ∈ s, f z ≠ 0) | ||||
|   (h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) : | ||||
|   HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by | ||||
|  | ||||
|   suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from | ||||
|     (harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f)) | ||||
|   suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from | ||||
|     (harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s) | ||||
|  | ||||
|   suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by | ||||
|   suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by | ||||
|     have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by | ||||
|       funext z | ||||
|       simp | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus