Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus 2024-05-30 10:41:10 +02:00
parent 2544242b13
commit 7f10e28525
1 changed files with 9 additions and 9 deletions

View File

@ -89,7 +89,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : → F₁} {l : F₁ →L[] G}
exact ContDiff.restrict_scalars h.1
theorem harmonicOn_comp_CLM_is_harmonicOn {f : → F₁} {s : Set } {l : F₁ →L[] G} (h : HarmonicOn f s) :
theorem harmonicOn_comp_CLM_is_harmonicOn {f : → F₁} {s : Set } {l : F₁ →L[] G} (hs : IsOpen s) (h : HarmonicOn f s) :
HarmonicOn (l ∘ f) s := by
constructor
@ -97,15 +97,14 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : → F₁} {s : Set } {l :
apply ContDiffOn.continuousLinearMap_comp
exact h.1
· -- Vanishing of Laplace
rw [laplace_compContLin]
simp
intro z zHyp
rw [laplace_compContLinAt]
simp
rw [h.2 z]
simp
assumption
apply ContDiffOn.contDiffAt h.1
exact IsOpen.mem_nhds hs zHyp
theorem harmonic_iff_comp_CLE_is_harmonic {f : → F₁} {l : F₁ ≃L[] G₁} :
@ -200,15 +199,16 @@ theorem antiholomorphic_is_harmonic {f : } (h : Differentiable f)
theorem log_normSq_of_holomorphicOn_is_harmonicOn
{f : }
{s : Set }
(hs : IsOpen s)
(h₁ : DifferentiableOn f s)
(h₂ : ∀ z ∈ s, f z ≠ 0)
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ) ∘ f) * f)) from by
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ) ∘ f) * f)) s from by
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ) ∘ f) * f) := by
funext z
simp