From 7f10e2852523c5b1b3d04afd15b51a1fa10c256b Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Thu, 30 May 2024 10:41:10 +0200 Subject: [PATCH] Update complexHarmonic.lean --- Nevanlinna/complexHarmonic.lean | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/Nevanlinna/complexHarmonic.lean b/Nevanlinna/complexHarmonic.lean index f573576..577b52d 100644 --- a/Nevanlinna/complexHarmonic.lean +++ b/Nevanlinna/complexHarmonic.lean @@ -89,7 +89,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} exact ContDiff.restrict_scalars ℝ h.1 -theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) : +theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) : HarmonicOn (l ∘ f) s := by constructor @@ -97,15 +97,14 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : apply ContDiffOn.continuousLinearMap_comp exact h.1 · -- Vanishing of Laplace - - rw [laplace_compContLin] - simp intro z zHyp + rw [laplace_compContLinAt] + simp rw [h.2 z] simp assumption - - + apply ContDiffOn.contDiffAt h.1 + exact IsOpen.mem_nhds hs zHyp theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} : @@ -200,15 +199,16 @@ theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) theorem log_normSq_of_holomorphicOn_is_harmonicOn {f : ℂ → ℂ} {s : Set ℂ} + (hs : IsOpen s) (h₁ : DifferentiableOn ℂ f s) (h₂ : ∀ z ∈ s, f z ≠ 0) (h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) : HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by - suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from - (harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f)) + suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from + (harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s) - suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by + suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by funext z simp