Update complexHarmonic.lean
This commit is contained in:
parent
2544242b13
commit
7f10e28525
|
@ -89,7 +89,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G}
|
||||||
exact ContDiff.restrict_scalars ℝ h.1
|
exact ContDiff.restrict_scalars ℝ h.1
|
||||||
|
|
||||||
|
|
||||||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) :
|
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) :
|
||||||
HarmonicOn (l ∘ f) s := by
|
HarmonicOn (l ∘ f) s := by
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
|
@ -97,15 +97,14 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l :
|
||||||
apply ContDiffOn.continuousLinearMap_comp
|
apply ContDiffOn.continuousLinearMap_comp
|
||||||
exact h.1
|
exact h.1
|
||||||
· -- Vanishing of Laplace
|
· -- Vanishing of Laplace
|
||||||
|
|
||||||
rw [laplace_compContLin]
|
|
||||||
simp
|
|
||||||
intro z zHyp
|
intro z zHyp
|
||||||
|
rw [laplace_compContLinAt]
|
||||||
|
simp
|
||||||
rw [h.2 z]
|
rw [h.2 z]
|
||||||
simp
|
simp
|
||||||
assumption
|
assumption
|
||||||
|
apply ContDiffOn.contDiffAt h.1
|
||||||
|
exact IsOpen.mem_nhds hs zHyp
|
||||||
|
|
||||||
|
|
||||||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||||||
|
@ -200,15 +199,16 @@ theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f)
|
||||||
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{s : Set ℂ}
|
{s : Set ℂ}
|
||||||
|
(hs : IsOpen s)
|
||||||
(h₁ : DifferentiableOn ℂ f s)
|
(h₁ : DifferentiableOn ℂ f s)
|
||||||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||||
|
|
||||||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
||||||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
||||||
|
|
||||||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
||||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||||
funext z
|
funext z
|
||||||
simp
|
simp
|
||||||
|
|
Loading…
Reference in New Issue