Update holomorphic.primitive.lean
This commit is contained in:
parent
2d7e62bb49
commit
7e6fc7bacd
|
@ -175,7 +175,7 @@ theorem primitive_lem1
|
|||
|
||||
|
||||
|
||||
theorem primitive_fderivAtBasepoint
|
||||
theorem primitive_fderivAtBasepointZero
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
|
@ -187,7 +187,7 @@ theorem primitive_fderivAtBasepoint
|
|||
rw [Asymptotics.isLittleO_iff]
|
||||
intro c hc
|
||||
|
||||
have {z : ℂ} {e : E} : z • e = (∫ (x : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (x : ℝ) in (0)..(z.im), e:= by
|
||||
have {z : ℂ} {e : E} : z • e = (∫ (_ : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ℝ) in (0)..(z.im), e:= by
|
||||
simp
|
||||
rw [smul_comm]
|
||||
rw [← smul_assoc]
|
||||
|
@ -204,10 +204,46 @@ theorem primitive_fderivAtBasepoint
|
|||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by sorry
|
||||
have t₁ {r : ℝ} :IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 r := by sorry
|
||||
have t₂ {a b : ℝ}: IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by sorry
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 a := by sorry
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl
|
||||
rw [this]
|
||||
continuity
|
||||
have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : ((fun x => { re := a, im := x }) : ℝ → ℂ) = (fun x => { re := a, im := 0 } + { re := 0, im := x }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
have : (fun x => { re := 0, im := x } : ℝ → ℂ) = Complex.I • Complex.ofRealCLM := by
|
||||
funext x
|
||||
simp
|
||||
have : (x : ℂ) = {re := x, im := 0} := by rfl
|
||||
rw [this]
|
||||
rw [Complex.I_mul]
|
||||
simp
|
||||
continuity
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
|
@ -232,24 +268,25 @@ theorem primitive_fderivAtBasepoint
|
|||
intro y hy
|
||||
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 ε
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
· exact Metric.ball_mem_nhds 0 h₁ε
|
||||
· apply Metric.ball_mem_nhds 0
|
||||
linarith
|
||||
· intro y hy
|
||||
have h₁y : |y.re| < ε := by
|
||||
have h₁y : |y.re| < ε / 4 := by
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||
_ < ε := by
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
assumption
|
||||
have h₂y : |y.im| < ε := by
|
||||
linarith
|
||||
have h₂y : |y.im| < ε / 4 := by
|
||||
calc |y.im|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
|
||||
_ < ε := by
|
||||
_ < ε / 4 := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
assumption
|
||||
linarith
|
||||
|
||||
have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
|
||||
let A := h.1
|
||||
|
@ -271,10 +308,10 @@ theorem primitive_fderivAtBasepoint
|
|||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε := by
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.re| := intervalComputation hx
|
||||
_ < ε := h₁y
|
||||
_ < ε / 4 := h₁y
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
|
@ -282,17 +319,16 @@ theorem primitive_fderivAtBasepoint
|
|||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
exact h₁x
|
||||
|
||||
linarith
|
||||
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε := by
|
||||
have h₁x : |x| < ε / 4 := by
|
||||
calc |x|
|
||||
_ ≤ |y.im| := intervalComputation hx
|
||||
_ < ε := h₂y
|
||||
_ < ε / 4 := h₂y
|
||||
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
|
@ -301,7 +337,7 @@ theorem primitive_fderivAtBasepoint
|
|||
calc Complex.abs { re := y.re, im := x }
|
||||
_ ≤ |y.re| + |x| := by
|
||||
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
||||
_ ≤ 2 * ε := by
|
||||
_ < ε := by
|
||||
linarith
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
|
@ -318,12 +354,30 @@ theorem primitive_fderivAtBasepoint
|
|||
_ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by
|
||||
simp
|
||||
rw [mul_add]
|
||||
_ ≤ c * ‖y‖ := by
|
||||
_ ≤ (c / (4 : ℝ)) * (4 * ‖y‖) := by
|
||||
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
|
||||
calc |y.re| + |y.im|
|
||||
_ ≤ ‖y‖ + ‖y‖ := by
|
||||
apply add_le_add
|
||||
apply Complex.abs_re_le_abs
|
||||
apply Complex.abs_im_le_abs
|
||||
_ ≤ 4 * ‖y‖ := by
|
||||
rw [← two_mul]
|
||||
apply mul_le_mul
|
||||
apply div_le_self
|
||||
exact le_of_lt hc
|
||||
linarith
|
||||
sorry
|
||||
rfl
|
||||
exact norm_nonneg y
|
||||
linarith
|
||||
|
||||
apply mul_le_mul
|
||||
rfl
|
||||
exact this
|
||||
apply add_nonneg
|
||||
apply abs_nonneg
|
||||
apply abs_nonneg
|
||||
linarith
|
||||
_ ≤ c * ‖y‖ := by
|
||||
linarith
|
||||
|
||||
|
||||
theorem primitive_additivity
|
||||
|
|
Loading…
Reference in New Issue