Update holomorphic_zero.lean

This commit is contained in:
Stefan Kebekus 2024-08-19 08:01:37 +02:00
parent 2c2370638a
commit 7b1c861a92
1 changed files with 35 additions and 1 deletions

View File

@ -115,7 +115,7 @@ theorem zeroDivisor_support_iff
assumption assumption
example theorem topOnPreconnected
{f : } {f : }
{U : Set } {U : Set }
(hU : IsPreconnected U) (hU : IsPreconnected U)
@ -132,6 +132,40 @@ example
tauto tauto
theorem supportZeroSet
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
ext x
constructor
· intro hx
constructor
· exact hx.1
exact zeroDivisor_zeroSet hx.2
· simp
intro h₁x h₂x
constructor
· exact h₁x
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
simp at A
rw [A]
constructor
· exact h₂x
· constructor
· exact h₁f x h₁x
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
simp at B
rw [← B]
dsimp [zeroDivisor]
simp [h₁f x h₁x]
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
exact topOnPreconnected hU h₁f h₂f h₁x
theorem discreteZeros theorem discreteZeros
{f : } : {f : } :
DiscreteTopology (Function.support (zeroDivisor f)) := by DiscreteTopology (Function.support (zeroDivisor f)) := by