working
This commit is contained in:
		| @@ -1,5 +1,5 @@ | |||||||
| import Mathlib.Analysis.Complex.TaylorSeries | import Mathlib.Analysis.Complex.TaylorSeries | ||||||
|  | import Mathlib.Data.ENNReal.Basic | ||||||
|  |  | ||||||
| noncomputable def primitive | noncomputable def primitive | ||||||
|   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] : |   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] : | ||||||
| @@ -333,23 +333,24 @@ lemma integrability₂ | |||||||
| theorem primitive_additivity | theorem primitive_additivity | ||||||
|   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] |   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] | ||||||
|   (f : ℂ  → E) |   (f : ℂ  → E) | ||||||
|   (hf : Differentiable ℂ f) |   (z₀ : ℂ) | ||||||
|   (z₀ z₁ : ℂ) : |   (R : ℝ) | ||||||
|   (fun z ↦ (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁)) = 0 := by |   (hf : DifferentiableOn ℂ f (Metric.ball z₀ R)) | ||||||
|   funext z |   (z₁ : ℂ) | ||||||
|  |   (hz₁ : z₁ ∈ Metric.ball z₀ R) : | ||||||
|  |   ∀ z ∈ Metric.ball z₁ (R - ‖z₁‖), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by | ||||||
|  |   intro z _ | ||||||
|  |  | ||||||
|   unfold primitive |   unfold primitive | ||||||
|   have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by |   have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by | ||||||
|     rw [intervalIntegral.integral_add_adjacent_intervals] |     rw [intervalIntegral.integral_add_adjacent_intervals] | ||||||
|     apply integrability₁ f hf |     sorry --apply integrability₁ f hf | ||||||
|     apply integrability₁ f hf |     sorry --apply integrability₁ f hf | ||||||
|   rw [this] |   rw [this] | ||||||
|   have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by |   have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by | ||||||
|     rw [intervalIntegral.integral_add_adjacent_intervals] |     rw [intervalIntegral.integral_add_adjacent_intervals] | ||||||
|     apply integrability₂ f hf |     sorry --apply integrability₂ f hf | ||||||
|     apply integrability₂ f hf |     sorry --apply integrability₂ f hf | ||||||
|   rw [this] |   rw [this] | ||||||
|   simp |   simp | ||||||
|  |  | ||||||
| @@ -358,7 +359,14 @@ theorem primitive_additivity | |||||||
|   rw [this] |   rw [this] | ||||||
|   simp |   simp | ||||||
|  |  | ||||||
|   let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ (hf.differentiableOn) |   have H : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by | ||||||
|  |     apply DifferentiableOn.mono hf | ||||||
|  |     intro x hx | ||||||
|  |     simp | ||||||
|  |  | ||||||
|  |     sorry | ||||||
|  |  | ||||||
|  |   let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H | ||||||
|   have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by |   have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by | ||||||
|     apply Complex.ext |     apply Complex.ext | ||||||
|     · simp |     · simp | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus