Update firstMain.lean
This commit is contained in:
parent
b189664211
commit
726ac9e93d
@ -39,6 +39,34 @@ noncomputable def MeromorphicOn.N_infty
|
||||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict |r|).divisor z))) * log (r * ‖z‖⁻¹)
|
||||
|
||||
|
||||
theorem Nevanlinna_counting₁₁
|
||||
{f : ℂ → ℂ}
|
||||
{a : ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||||
|
||||
have {z : ℂ} : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by
|
||||
intro h
|
||||
|
||||
let A := (MeromorphicAt.const a)
|
||||
rw [←MeromorphicAt.order_add_of_ne_orders (hf z trivial)]
|
||||
simp
|
||||
sorry
|
||||
|
||||
funext r
|
||||
unfold MeromorphicOn.N_infty
|
||||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||||
repeat
|
||||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||
apply Finset.sum_congr rfl
|
||||
intro x hx
|
||||
congr 2
|
||||
|
||||
simp at hx
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
theorem Nevanlinna_counting₀
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
|
Loading…
Reference in New Issue
Block a user