From 726ac9e93dcd69fd1e9330ebc39af57adbd6892c Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Tue, 24 Dec 2024 06:50:23 +0100 Subject: [PATCH] Update firstMain.lean --- Nevanlinna/firstMain.lean | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git a/Nevanlinna/firstMain.lean b/Nevanlinna/firstMain.lean index 852f9da..46fb339 100644 --- a/Nevanlinna/firstMain.lean +++ b/Nevanlinna/firstMain.lean @@ -39,6 +39,34 @@ noncomputable def MeromorphicOn.N_infty fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict |r|).divisor z))) * log (r * ‖z‖⁻¹) +theorem Nevanlinna_counting₁₁ + {f : ℂ → ℂ} + {a : ℂ} + (hf : MeromorphicOn f ⊤) : + (hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by + + have {z : ℂ} : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by + intro h + + let A := (MeromorphicAt.const a) + rw [←MeromorphicAt.order_add_of_ne_orders (hf z trivial)] + simp + sorry + + funext r + unfold MeromorphicOn.N_infty + let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|) + repeat + rw [finsum_eq_sum_of_support_subset (s := A.toFinset)] + apply Finset.sum_congr rfl + intro x hx + congr 2 + + simp at hx + + sorry + + theorem Nevanlinna_counting₀ {f : ℂ → ℂ} (hf : MeromorphicOn f ⊤) :