Update complexHarmonic.lean
This commit is contained in:
parent
077bace964
commit
71ad6aa67e
|
@ -17,13 +17,47 @@ import Nevanlinna.laplace
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||||||
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||||
|
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||||||
|
|
||||||
|
|
||||||
def Harmonic (f : ℂ → F) : Prop :=
|
def Harmonic (f : ℂ → F) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
|
|
||||||
theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
||||||
|
Harmonic (l ∘ f) := by
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· -- Continuous differentiability
|
||||||
|
apply ContDiff.comp
|
||||||
|
exact ContinuousLinearMap.contDiff l
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
· rw [laplace_compContLin]
|
||||||
|
simp
|
||||||
|
intro z
|
||||||
|
rw [h.2 z]
|
||||||
|
simp
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
|
|
||||||
|
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||||||
|
Harmonic f ↔ Harmonic (l ∘ f) := by
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||||
|
rw [this]
|
||||||
|
exact harmonic_comp_CLM_is_harmonic
|
||||||
|
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||||
|
funext z
|
||||||
|
unfold Function.comp
|
||||||
|
simp
|
||||||
|
nth_rewrite 2 [this]
|
||||||
|
exact harmonic_comp_CLM_is_harmonic
|
||||||
|
|
||||||
|
|
||||||
|
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||||
Harmonic f := by
|
Harmonic f := by
|
||||||
|
|
||||||
-- f is real C²
|
-- f is real C²
|
||||||
|
@ -83,36 +117,170 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
exact fI_is_real_differentiable
|
exact fI_is_real_differentiable
|
||||||
|
|
||||||
|
|
||||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
Harmonic (Complex.reCLM ∘ f) := by
|
Harmonic (Complex.reCLM ∘ f) := by
|
||||||
|
apply harmonic_comp_CLM_is_harmonic
|
||||||
constructor
|
exact holomorphic_is_harmonic h
|
||||||
· -- Continuous differentiability
|
|
||||||
apply ContDiff.comp
|
|
||||||
exact ContinuousLinearMap.contDiff Complex.reCLM
|
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
||||||
· rw [laplace_compContLin]
|
|
||||||
simp
|
|
||||||
intro z
|
|
||||||
rw [(holomorphic_is_harmonic h).right z]
|
|
||||||
simp
|
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
||||||
|
|
||||||
|
|
||||||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
Harmonic (Complex.imCLM ∘ f) := by
|
Harmonic (Complex.imCLM ∘ f) := by
|
||||||
|
apply harmonic_comp_CLM_is_harmonic
|
||||||
|
exact holomorphic_is_harmonic h
|
||||||
|
|
||||||
|
|
||||||
|
theorem log_normSq_of_holomorphic_is_harmonic
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(h₁ : Differentiable ℂ f)
|
||||||
|
(h₂ : ∀ z, f z ≠ 0)
|
||||||
|
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||||
|
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/- We start with a number of lemmas on regularity of all the functions involved -/
|
||||||
|
|
||||||
|
-- The norm square is real C²
|
||||||
|
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
||||||
|
unfold Complex.normSq
|
||||||
|
simp
|
||||||
|
conv =>
|
||||||
|
arg 3
|
||||||
|
intro x
|
||||||
|
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
|
||||||
|
apply ContDiff.add
|
||||||
|
apply ContDiff.mul
|
||||||
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
||||||
|
apply ContinuousLinearMap.contDiff Complex.reCLM
|
||||||
|
apply ContDiff.mul
|
||||||
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||||
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||||
|
|
||||||
|
-- f is real C²
|
||||||
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||||
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
||||||
|
|
||||||
|
-- Complex.log ∘ f is real C²
|
||||||
|
have log_f_is_holomorphic : Differentiable ℂ (Complex.log ∘ f) := by
|
||||||
|
intro z
|
||||||
|
apply DifferentiableAt.comp
|
||||||
|
exact Complex.differentiableAt_log (h₃ z)
|
||||||
|
exact h₁ z
|
||||||
|
|
||||||
|
-- Real.log |f|² is real C²
|
||||||
|
have t₄ : ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
|
||||||
|
rw [contDiff_iff_contDiffAt]
|
||||||
|
intro z
|
||||||
|
apply ContDiffAt.comp
|
||||||
|
apply Real.contDiffAt_log.mpr
|
||||||
|
simp
|
||||||
|
exact h₂ z
|
||||||
|
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
||||||
|
exact ContDiff.contDiffAt f_is_real_C2
|
||||||
|
|
||||||
|
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||||
|
funext z
|
||||||
|
unfold Function.comp
|
||||||
|
rw [Complex.log_conj]
|
||||||
|
rfl
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· -- Continuous differentiability
|
· -- logabs f is real C²
|
||||||
apply ContDiff.comp
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
exact ContinuousLinearMap.contDiff Complex.imCLM
|
funext z
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
simp
|
||||||
· rw [laplace_compContLin]
|
unfold Complex.abs
|
||||||
|
simp
|
||||||
|
rw [Real.log_sqrt]
|
||||||
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||||
|
exact rfl
|
||||||
|
rw [this]
|
||||||
|
apply ContDiff.const_smul
|
||||||
|
exact t₄
|
||||||
|
|
||||||
|
· -- Laplace vanishes
|
||||||
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
unfold Complex.abs
|
||||||
|
simp
|
||||||
|
rw [Real.log_sqrt]
|
||||||
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
|
rw [this]
|
||||||
|
rw [laplace_smul]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
have : ∀ (z : ℂ), Complex.laplace (Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 ↔ Complex.laplace (Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f) z = 0 := by
|
||||||
|
intro z
|
||||||
|
rw [laplace_compContLin]
|
||||||
|
simp
|
||||||
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
exact t₄
|
||||||
|
conv =>
|
||||||
|
intro z
|
||||||
|
rw [this z]
|
||||||
|
|
||||||
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f := by
|
||||||
|
unfold Function.comp
|
||||||
|
funext z
|
||||||
|
apply Complex.ofReal_log
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
have : Complex.ofRealCLM ∘ ⇑Complex.normSq ∘ f = ((starRingEnd ℂ) ∘ f) * f := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
exact Complex.normSq_eq_conj_mul_self
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||||||
|
unfold Function.comp
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
rw [Complex.log_mul_eq_add_log_iff]
|
||||||
|
|
||||||
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||||
|
rw [Complex.arg_conj]
|
||||||
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
constructor
|
||||||
|
· exact Real.pi_pos
|
||||||
|
· exact Real.pi_nonneg
|
||||||
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||||||
|
exact h₂ z
|
||||||
|
rw [this]
|
||||||
|
rw [laplace_add]
|
||||||
|
|
||||||
|
rw [t₂, laplace_compCLE]
|
||||||
intro z
|
intro z
|
||||||
rw [(holomorphic_is_harmonic h).right z]
|
|
||||||
simp
|
simp
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f)
|
||||||
|
rw [t₂]
|
||||||
|
apply ContDiff.comp
|
||||||
|
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
exact t₄
|
||||||
|
|
||||||
|
|
||||||
theorem logabs_of_holomorphic_is_harmonic
|
theorem logabs_of_holomorphic_is_harmonic
|
||||||
|
|
Loading…
Reference in New Issue