This commit is contained in:
Stefan Kebekus
2024-08-06 11:13:21 +02:00
parent c799170843
commit 6bdb910b7c

View File

@@ -515,9 +515,9 @@ theorem primitive_additivity'
:
primitive z₀ f =[nhds z₁] fun z (primitive z₁ f z) + (primitive z₀ f z₁) := by
let d := fun ε ((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2)
let d := fun ε ((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2)
have h₀d : Continuous d := by continuity
have h₁d : ε, 0 d ε := fun ε Real.sqrt_nonneg ((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2)
have h₁d : ε, 0 d ε := fun ε Real.sqrt_nonneg ((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2)
obtain ε, h₀ε, h₁ε : ε > 0, d ε < R := by
let Omega := d⁻¹' Metric.ball 0 R
@@ -525,6 +525,11 @@ theorem primitive_additivity'
have lem₀Ω : IsOpen Omega := IsOpen.preimage h₀d Metric.isOpen_ball
have lem₁Ω : 0 Omega := by
dsimp [Omega, d]; simp
have : dist z₁.re z₀.re = |z₁.re - z₀.re| := by exact rfl
rw [this]
have : dist z₁.im z₀.im = |z₁.im - z₀.im| := by exact rfl
rw [this]
simp
rw [ Complex.dist_eq_re_im]; simp
exact hz₁
obtain ε, h₁ε, h₂ε := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω
@@ -570,13 +575,17 @@ theorem primitive_additivity'
have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
have t₀ : ((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < ( rx ^ 2 + ry ^ 2) := by
rw [Real.sqrt_lt_sqrt_iff]
apply add_lt_add
· dsimp [rx]
sorry
have t₁ : ( rx ^ 2 + ry ^ 2) = d ε := by
sorry
· sorry
calc ((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2)
_ < ( rx ^ 2 + ry ^ 2) := by exact t₀
_ = d ε := by exact t
_ < ( rx ^ 2 + ry ^ 2) := by
exact t
_ = d ε := by dsimp [d, rx, ry]
_ < R := by exact h₁ε
have h'z₁ : z₁ (Metric.ball z₀.re rx × Metric.ball z₀.im ry) := by