diff --git a/Nevanlinna/holomorphic_primitive2.lean b/Nevanlinna/holomorphic_primitive2.lean index fae6a2f..d30927b 100644 --- a/Nevanlinna/holomorphic_primitive2.lean +++ b/Nevanlinna/holomorphic_primitive2.lean @@ -515,9 +515,9 @@ theorem primitive_additivity' : primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by - let d := fun ε ↦ √((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2) + let d := fun ε ↦ √((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2) have h₀d : Continuous d := by continuity - have h₁d : ∀ ε, 0 ≤ d ε := fun ε ↦ Real.sqrt_nonneg ((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2) + have h₁d : ∀ ε, 0 ≤ d ε := fun ε ↦ Real.sqrt_nonneg ((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2) obtain ⟨ε, h₀ε, h₁ε⟩ : ∃ ε > 0, d ε < R := by let Omega := d⁻¹' Metric.ball 0 R @@ -525,6 +525,11 @@ theorem primitive_additivity' have lem₀Ω : IsOpen Omega := IsOpen.preimage h₀d Metric.isOpen_ball have lem₁Ω : 0 ∈ Omega := by dsimp [Omega, d]; simp + have : dist z₁.re z₀.re = |z₁.re - z₀.re| := by exact rfl + rw [this] + have : dist z₁.im z₀.im = |z₁.im - z₀.im| := by exact rfl + rw [this] + simp rw [← Complex.dist_eq_re_im]; simp exact hz₁ obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω @@ -570,13 +575,17 @@ theorem primitive_additivity' have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2 have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by - sorry - have t₁ : √( rx ^ 2 + ry ^ 2) = d ε := by - sorry + rw [Real.sqrt_lt_sqrt_iff] + apply add_lt_add + · dsimp [rx] + + sorry + · sorry calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) - _ < √( rx ^ 2 + ry ^ 2) := by exact t₀ - _ = d ε := by exact t₁ + _ < √( rx ^ 2 + ry ^ 2) := by + exact t₀ + _ = d ε := by dsimp [d, rx, ry] _ < R := by exact h₁ε have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by