working
This commit is contained in:
parent
c799170843
commit
6bdb910b7c
|
@ -515,9 +515,9 @@ theorem primitive_additivity'
|
||||||
:
|
:
|
||||||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||||
|
|
||||||
let d := fun ε ↦ √((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2)
|
let d := fun ε ↦ √((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2)
|
||||||
have h₀d : Continuous d := by continuity
|
have h₀d : Continuous d := by continuity
|
||||||
have h₁d : ∀ ε, 0 ≤ d ε := fun ε ↦ Real.sqrt_nonneg ((z₁.re - z₀.re + ε) ^ 2 + (z₁.im - z₀.im + ε) ^ 2)
|
have h₁d : ∀ ε, 0 ≤ d ε := fun ε ↦ Real.sqrt_nonneg ((dist z₁.re z₀.re + ε) ^ 2 + (dist z₁.im z₀.im + ε) ^ 2)
|
||||||
|
|
||||||
obtain ⟨ε, h₀ε, h₁ε⟩ : ∃ ε > 0, d ε < R := by
|
obtain ⟨ε, h₀ε, h₁ε⟩ : ∃ ε > 0, d ε < R := by
|
||||||
let Omega := d⁻¹' Metric.ball 0 R
|
let Omega := d⁻¹' Metric.ball 0 R
|
||||||
|
@ -525,6 +525,11 @@ theorem primitive_additivity'
|
||||||
have lem₀Ω : IsOpen Omega := IsOpen.preimage h₀d Metric.isOpen_ball
|
have lem₀Ω : IsOpen Omega := IsOpen.preimage h₀d Metric.isOpen_ball
|
||||||
have lem₁Ω : 0 ∈ Omega := by
|
have lem₁Ω : 0 ∈ Omega := by
|
||||||
dsimp [Omega, d]; simp
|
dsimp [Omega, d]; simp
|
||||||
|
have : dist z₁.re z₀.re = |z₁.re - z₀.re| := by exact rfl
|
||||||
|
rw [this]
|
||||||
|
have : dist z₁.im z₀.im = |z₁.im - z₀.im| := by exact rfl
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
rw [← Complex.dist_eq_re_im]; simp
|
rw [← Complex.dist_eq_re_im]; simp
|
||||||
exact hz₁
|
exact hz₁
|
||||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω
|
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω
|
||||||
|
@ -570,13 +575,17 @@ theorem primitive_additivity'
|
||||||
have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
||||||
|
|
||||||
have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
||||||
|
rw [Real.sqrt_lt_sqrt_iff]
|
||||||
|
apply add_lt_add
|
||||||
|
· dsimp [rx]
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
have t₁ : √( rx ^ 2 + ry ^ 2) = d ε := by
|
· sorry
|
||||||
sorry
|
|
||||||
|
|
||||||
calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2)
|
calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2)
|
||||||
_ < √( rx ^ 2 + ry ^ 2) := by exact t₀
|
_ < √( rx ^ 2 + ry ^ 2) := by
|
||||||
_ = d ε := by exact t₁
|
exact t₀
|
||||||
|
_ = d ε := by dsimp [d, rx, ry]
|
||||||
_ < R := by exact h₁ε
|
_ < R := by exact h₁ε
|
||||||
|
|
||||||
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||||
|
|
Loading…
Reference in New Issue