Update holomorphic_JensenFormula.lean
This commit is contained in:
parent
17705601c2
commit
6ab6e6e6a9
|
@ -1,47 +1,72 @@
|
||||||
import Nevanlinna.harmonicAt_examples
|
import Nevanlinna.harmonicAt_examples
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
import Nevanlinna.harmonicAt_meanValue
|
||||||
|
|
||||||
lemma l₀
|
lemma l₀ {x₁ x₂ : ℝ} : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
|
||||||
{x₁ x₂ : ℝ} :
|
|
||||||
(circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
|
|
||||||
dsimp [circleMap]
|
dsimp [circleMap]
|
||||||
simp
|
simp
|
||||||
rw [add_mul, Complex.exp_add]
|
rw [add_mul, Complex.exp_add]
|
||||||
|
|
||||||
|
lemma l₁ {x : ℝ} : ‖circleMap 0 1 x‖ = 1 := by
|
||||||
|
rw [Complex.norm_eq_abs, abs_circleMap_zero]
|
||||||
|
simp
|
||||||
|
|
||||||
|
lemma l₂ {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
|
||||||
|
calc ‖(circleMap 0 1 x) - a‖
|
||||||
|
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by
|
||||||
|
exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
|
||||||
|
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
|
||||||
|
rw [l₁]
|
||||||
|
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
|
||||||
|
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
|
||||||
|
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
|
||||||
|
rw [mul_sub]
|
||||||
|
_ = ‖(circleMap 0 1 0) - (circleMap 0 1 (-x)) * a‖ := by
|
||||||
|
rw [l₀]
|
||||||
|
simp
|
||||||
|
_ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
|
||||||
|
congr
|
||||||
|
dsimp [circleMap]
|
||||||
|
simp
|
||||||
|
|
||||||
lemma int₀
|
lemma int₀
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : a ∈ Metric.ball 0 1) :
|
(ha : a ∈ Metric.ball 0 1) :
|
||||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||||
|
|
||||||
|
simp_rw [l₂]
|
||||||
have {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖(circleMap 0 1 x) - a‖ := by
|
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
||||||
calc ‖(circleMap 0 1 x) - a‖
|
|
||||||
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
|
|
||||||
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
|
|
||||||
have : ‖(circleMap 0 1 (-x))‖ = 1 := by
|
|
||||||
rw [Complex.norm_eq_abs, abs_circleMap_zero]
|
|
||||||
simp
|
|
||||||
rw [this]
|
|
||||||
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
|
|
||||||
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
|
|
||||||
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
|
|
||||||
rw [mul_sub]
|
|
||||||
|
|
||||||
_ =
|
|
||||||
sorry
|
|
||||||
|
|
||||||
conv =>
|
conv =>
|
||||||
left
|
left
|
||||||
arg 1
|
arg 1
|
||||||
intro x
|
intro x
|
||||||
rw [← this]
|
rw [this]
|
||||||
|
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
|
||||||
|
|
||||||
|
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
|
||||||
|
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
|
||||||
|
dsimp [f₁]
|
||||||
|
congr 4
|
||||||
|
let A := periodic_circleMap 0 1 x
|
||||||
|
simp at A
|
||||||
|
exact id (Eq.symm A)
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
|
||||||
simp
|
simp
|
||||||
|
dsimp [f₁]
|
||||||
|
|
||||||
have hf : ∀ x ∈ Metric.ball 0 2, HarmonicAt F x := by sorry
|
let F := fun z ↦ Real.log ‖1 - z * a‖
|
||||||
|
|
||||||
|
have hf : ∀ x ∈ Metric.ball 0 2 , HarmonicAt F x := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
let A := harmonic_meanValue 2 1 Real.zero_lt_one one_lt_two hf
|
||||||
|
dsimp [F] at A
|
||||||
|
simp at A
|
||||||
|
exact A
|
||||||
|
|
||||||
|
|
||||||
theorem jensen_case_R_eq_one
|
theorem jensen_case_R_eq_one
|
||||||
|
|
Loading…
Reference in New Issue