Update holomorphic_JensenFormula.lean

This commit is contained in:
Stefan Kebekus
2024-08-09 09:46:37 +02:00
parent 17705601c2
commit 6ab6e6e6a9

View File

@@ -1,47 +1,72 @@
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
lemma l₀
{x₁ x₂ : } :
(circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
lemma l₀ {x₁ x₂ : } : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
dsimp [circleMap]
simp
rw [add_mul, Complex.exp_add]
lemma l₁ {x : } : circleMap 0 1 x = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
lemma l₂ {x : } : (circleMap 0 1 x) - a = 1 - (circleMap 0 1 (-x)) * a := by
calc (circleMap 0 1 x) - a
_ = 1 * (circleMap 0 1 x) - a := by
exact Eq.symm (one_mul circleMap 0 1 x - a)
_ = (circleMap 0 1 (-x)) * (circleMap 0 1 x) - a := by
rw [l₁]
_ = (circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a) := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = (circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a := by
rw [mul_sub]
_ = (circleMap 0 1 0) - (circleMap 0 1 (-x)) * a := by
rw [l₀]
simp
_ = 1 - (circleMap 0 1 (-x)) * a := by
congr
dsimp [circleMap]
simp
lemma int₀
{a : }
(ha : a Metric.ball 0 1) :
(x : ) in (0)..2 * Real.pi, Real.log circleMap 0 1 x - a = 0 := by
have {x : } : (circleMap 0 1 x) - a = (circleMap 0 1 x) - a := by
calc (circleMap 0 1 x) - a
_ = 1 * (circleMap 0 1 x) - a := by exact Eq.symm (one_mul circleMap 0 1 x - a)
_ = (circleMap 0 1 (-x)) * (circleMap 0 1 x) - a := by
have : (circleMap 0 1 (-x)) = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
rw [this]
_ = (circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a) := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = (circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a := by
rw [mul_sub]
_ =
sorry
simp_rw [l₂]
have {x : } : Real.log 1 - circleMap 0 1 (-x) * a = (fun w Real.log 1 - circleMap 0 1 (w) * a) (-x) := by rfl
conv =>
left
arg 1
intro x
rw [ this]
rw [this]
rw [intervalIntegral.integral_comp_neg ((fun w Real.log 1 - circleMap 0 1 (w) * a))]
let f₁ := fun w Real.log 1 - circleMap 0 1 w * a
have {x : } : Real.log 1 - circleMap 0 1 x * a = f₁ (x + 2 * Real.pi) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
simp
dsimp [f₁]
have hf : x Metric.ball 0 2, HarmonicAt F x := by sorry
let F := fun z Real.log 1 - z * a
sorry
have hf : x Metric.ball 0 2 , HarmonicAt F x := by
sorry
let A := harmonic_meanValue 2 1 Real.zero_lt_one one_lt_two hf
dsimp [F] at A
simp at A
exact A
theorem jensen_case_R_eq_one