Update meromorphicOn.lean
This commit is contained in:
parent
12888b75fb
commit
68acec101e
|
@ -54,6 +54,44 @@ theorem MeromorphicOn.open_of_order_eq_top
|
|||
· exact isOpen_induced h₂t'
|
||||
· exact h₃t'
|
||||
|
||||
theorem MeromorphicOn.open_of_order_neq_top
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : MeromorphicOn f U) :
|
||||
IsOpen { u : U | (h₁f u.1 u.2).order ≠ ⊤ } := by
|
||||
|
||||
apply isOpen_iff_forall_mem_open.mpr
|
||||
intro z hz
|
||||
simp at hz
|
||||
|
||||
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
|
||||
rcases A with h|h
|
||||
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
|
||||
tauto
|
||||
· let A := (h₁f z.1 z.2).eventually_analyticAt
|
||||
let B := Filter.Eventually.and h A
|
||||
rw [eventually_nhdsWithin_iff] at B
|
||||
rw [eventually_nhds_iff] at B
|
||||
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
|
||||
let t : Set U := Subtype.val ⁻¹' t'
|
||||
use t
|
||||
constructor
|
||||
· intro w hw
|
||||
simp
|
||||
by_cases h₁w : w = z
|
||||
· rwa [h₁w]
|
||||
· let B := h₁t' w hw
|
||||
simp at B
|
||||
have : (w : ℂ) ≠ (z : ℂ) := by exact Subtype.coe_ne_coe.mpr h₁w
|
||||
let C := B this
|
||||
let D := C.2.order_eq_zero_iff.2 C.1
|
||||
rw [C.2.meromorphicAt_order, D]
|
||||
simp
|
||||
· constructor
|
||||
· exact isOpen_induced h₂t'
|
||||
· exact h₃t'
|
||||
|
||||
|
||||
theorem MeromorphicOn.order_ne_top
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
|
|
Loading…
Reference in New Issue