Update holomorphic_primitive2.lean
This commit is contained in:
parent
f0b84fcbff
commit
656d50e367
|
@ -20,8 +20,9 @@ theorem primitive_zeroAtBasepoint
|
||||||
|
|
||||||
theorem primitive_fderivAtBasepointZero
|
theorem primitive_fderivAtBasepointZero
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
{f : ℂ → E}
|
||||||
(hf : ContinuousAt f 0) :
|
{R : ℝ}
|
||||||
|
(hf : ContinuousOn f (Metric.ball 0 R)) :
|
||||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||||
unfold primitive
|
unfold primitive
|
||||||
simp
|
simp
|
||||||
|
@ -277,19 +278,20 @@ theorem primitive_translation
|
||||||
theorem primitive_hasDerivAtBasepoint
|
theorem primitive_hasDerivAtBasepoint
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
{f : ℂ → E}
|
{f : ℂ → E}
|
||||||
|
{R : ℝ}
|
||||||
(z₀ : ℂ)
|
(z₀ : ℂ)
|
||||||
(hf : ContinuousAt f z₀) :
|
(hf : ContinuousOn f (Metric.ball z₀ R)) :
|
||||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||||
|
|
||||||
let g := f ∘ fun z ↦ z + z₀
|
let g := f ∘ fun z ↦ z + z₀
|
||||||
have : ContinuousAt g 0 := by
|
have hg : ContinuousOn g (Metric.ball 0 R) := by
|
||||||
apply ContinuousAt.comp
|
apply ContinuousOn.comp
|
||||||
simpa
|
fun_prop
|
||||||
apply ContinuousAt.add
|
fun_prop
|
||||||
exact fun ⦃U⦄ a => a
|
intro x hx
|
||||||
exact continuousAt_const
|
simp
|
||||||
let A := primitive_fderivAtBasepointZero g this
|
simp at hx
|
||||||
simp at A
|
assumption
|
||||||
|
|
||||||
let B := primitive_translation g z₀ z₀
|
let B := primitive_translation g z₀ z₀
|
||||||
simp at B
|
simp at B
|
||||||
|
@ -299,8 +301,7 @@ theorem primitive_hasDerivAtBasepoint
|
||||||
simp
|
simp
|
||||||
rw [this] at B
|
rw [this] at B
|
||||||
rw [B]
|
rw [B]
|
||||||
have : f z₀ = (1 : ℂ) • (f z₀) := by
|
have : f z₀ = (1 : ℂ) • (f z₀) := (MulAction.one_smul (f z₀)).symm
|
||||||
exact (MulAction.one_smul (f z₀)).symm
|
|
||||||
conv =>
|
conv =>
|
||||||
arg 2
|
arg 2
|
||||||
rw [this]
|
rw [this]
|
||||||
|
@ -309,7 +310,7 @@ theorem primitive_hasDerivAtBasepoint
|
||||||
simp
|
simp
|
||||||
have : g 0 = f z₀ := by simp [g]
|
have : g 0 = f z₀ := by simp [g]
|
||||||
rw [← this]
|
rw [← this]
|
||||||
exact A
|
exact primitive_fderivAtBasepointZero hg
|
||||||
apply HasDerivAt.sub_const
|
apply HasDerivAt.sub_const
|
||||||
have : (fun (x : ℂ) ↦ x) = id := by
|
have : (fun (x : ℂ) ↦ x) = id := by
|
||||||
funext x
|
funext x
|
||||||
|
|
Loading…
Reference in New Issue