From 656d50e36794891d2de820d0f393c67daff12c10 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Wed, 7 Aug 2024 12:28:36 +0200 Subject: [PATCH] Update holomorphic_primitive2.lean --- Nevanlinna/holomorphic_primitive2.lean | 29 +++++++++++++------------- 1 file changed, 15 insertions(+), 14 deletions(-) diff --git a/Nevanlinna/holomorphic_primitive2.lean b/Nevanlinna/holomorphic_primitive2.lean index a202aef..a26590d 100644 --- a/Nevanlinna/holomorphic_primitive2.lean +++ b/Nevanlinna/holomorphic_primitive2.lean @@ -20,8 +20,9 @@ theorem primitive_zeroAtBasepoint theorem primitive_fderivAtBasepointZero {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] - (f : ℂ → E) - (hf : ContinuousAt f 0) : + {f : ℂ → E} + {R : ℝ} + (hf : ContinuousOn f (Metric.ball 0 R)) : HasDerivAt (primitive 0 f) (f 0) 0 := by unfold primitive simp @@ -277,19 +278,20 @@ theorem primitive_translation theorem primitive_hasDerivAtBasepoint {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] {f : ℂ → E} + {R : ℝ} (z₀ : ℂ) - (hf : ContinuousAt f z₀) : + (hf : ContinuousOn f (Metric.ball z₀ R)) : HasDerivAt (primitive z₀ f) (f z₀) z₀ := by let g := f ∘ fun z ↦ z + z₀ - have : ContinuousAt g 0 := by - apply ContinuousAt.comp - simpa - apply ContinuousAt.add - exact fun ⦃U⦄ a => a - exact continuousAt_const - let A := primitive_fderivAtBasepointZero g this - simp at A + have hg : ContinuousOn g (Metric.ball 0 R) := by + apply ContinuousOn.comp + fun_prop + fun_prop + intro x hx + simp + simp at hx + assumption let B := primitive_translation g z₀ z₀ simp at B @@ -299,8 +301,7 @@ theorem primitive_hasDerivAtBasepoint simp rw [this] at B rw [B] - have : f z₀ = (1 : ℂ) • (f z₀) := by - exact (MulAction.one_smul (f z₀)).symm + have : f z₀ = (1 : ℂ) • (f z₀) := (MulAction.one_smul (f z₀)).symm conv => arg 2 rw [this] @@ -309,7 +310,7 @@ theorem primitive_hasDerivAtBasepoint simp have : g 0 = f z₀ := by simp [g] rw [← this] - exact A + exact primitive_fderivAtBasepointZero hg apply HasDerivAt.sub_const have : (fun (x : ℂ) ↦ x) = id := by funext x