Working…

This commit is contained in:
Stefan Kebekus
2024-06-27 14:02:00 +02:00
parent c59e12a468
commit 6412671bc6
3 changed files with 62 additions and 61 deletions

View File

@@ -1,51 +1,60 @@
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.LinearAlgebra.Basis
import Mathlib.LinearAlgebra.Contraction
open BigOperators
open Finset
lemma OrthonormalBasis.sum_repr'
{𝕜 : Type*} [RCLike 𝕜]
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 E)
(v : E) :
v = i, b i, v_𝕜 (b i) := by
nth_rw 1 [ (b.sum_repr v)]
simp_rw [b.repr_apply_apply v]
noncomputable def realInnerAsElementOfDualTensorprod
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E]
: TensorProduct E E [] := TensorProduct.lift bilinFormOfRealInner
noncomputable def dual'
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] [FiniteDimensional E]
: (TensorProduct E E [] ) [] TensorProduct E E := by
let d := InnerProductSpace.toDual E
let e := d.toLinearEquiv
let a := TensorProduct.congr e e
let b := homTensorHomEquiv E E
sorry
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
lemma vectorPresentation'
theorem InvariantTensor
[Fintype ι]
(b : OrthonormalBasis ι E)
--(hb : Orthonormal b)
(v : E) :
v = i, b i, v_ (b i) := by
(v : Basis ι E)
(c : ι )
(L : ContinuousMultilinearMap (fun (_ : Fin 2) E) F) :
L (fun _ => j : ι, c j v j) = x : Fin 2 ι, (c (x 0) * c (x 1)) L ((fun i => v (x i))) := by
let A := b.sum_repr v
let i : ι := by sorry
let B := b.repr v i
rw [L.map_sum]
simp_rw [L.map_smul_univ]
sorry
nth_rw 1 [ (b.sum_repr v)]
apply Fintype.sum_congr
intro i
--let A := b.repr v
--have : (b.repr v) = ((OrthonormalBasis.toBasis b).repr v) := by tauto
rw [ Orthonormal.inner_right_finsupp hb (b.repr v) i]
simp
lemma vectorPresentation
[Fintype ι]
(b : Basis ι E)
(hb : Orthonormal b)
(v : E) :
v = i, b i, v_ (b i) := by
nth_rw 1 [ (b.sum_repr v)]
apply Fintype.sum_congr
intro i
rw [ Orthonormal.inner_right_finsupp hb (b.repr v) i]
simp
theorem BilinearCalc
[Fintype ι]
@@ -55,14 +64,10 @@ theorem BilinearCalc
L (fun _ => j : ι, c j v j) = x : Fin 2 ι, (c (x 0) * c (x 1)) L ((fun i => v (x i))) := by
rw [L.map_sum]
conv =>
left
arg 2
intro r
rw [L.map_smul_univ]
simp
simp_rw [L.map_smul_univ]
sorry
/-
lemma c2
[Fintype ι]
(b : Basis ι E)
@@ -79,7 +84,7 @@ lemma c2
intro i'
rw [Orthonormal.inner_left_fintype hb]
rw [Orthonormal.inner_left_fintype hb]
-/
lemma fin_sum
[Fintype ι]
@@ -94,10 +99,8 @@ lemma fin_sum
theorem LaplaceIndep
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(v₁ : OrthonormalBasis ι E)
(v₂ : OrthonormalBasis ι E)
(L : ContinuousMultilinearMap (fun (_ : Fin 2) E) F) :
i, L (fun _ v₁ i) = i, L (fun _ => v₂ i) := by
@@ -116,7 +119,7 @@ theorem LaplaceIndep
right
arg 2
intro i
rw [vectorPresentation v₁ hv₁ (v₂ i)]
rw [v.sum_repr' (v₂ i)]
rw [BilinearCalc]
rw [Finset.sum_comm]
conv =>
@@ -160,10 +163,8 @@ noncomputable def Laplace_wrt_basis
theorem LaplaceIndep'
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(v₁ : OrthonormalBasis ι E)
(v₂ : OrthonormalBasis ι E)
(f : E F)
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by